30 research outputs found

    Strong enhancement of transport by interaction on contact links

    Get PDF
    Strong repulsive interactions within a one dimensional Fermi system in a two-probe configuration normally lead to a reduced off-resonance conductance. We show that if the repulsive interaction extends to the contact regions, a strong increase of the conductance may occur, even for systems where one would expect to find a reduced conductance. An essential ingredient in our calculations is a momentum-space representation of the leads, which allows a high energy resolution. Further, we demonstrate that these results are independent of the high-energy cutoff and that the relevant scale is set by the Fermi velocity.Comment: Published version -- references correcte

    Geometry of intensive scalar dissipation events in turbulence

    Full text link
    Maxima of the scalar dissipation rate in turbulence appear in form of sheets and correspond to the potentially most intensive scalar mixing events. Their cross-section extension determines a locally varying diffusion scale of the mixing process and extends the classical Batchelor picture of one mean diffusion scale. The distribution of the local diffusion scales is analysed for different Reynolds and Schmidt numbers with a fast multiscale technique applied to very high-resolution simulation data. The scales take always values across the whole Batchelor range and beyond. Furthermore, their distribution is traced back to the distribution of the contractive short-time Lyapunov exponent of the flow.Comment: 4 pages, 5 Postscript figures (2 with reduced quality

    Chemical turbulence equivalent to Nikolavskii turbulence

    Get PDF
    We find evidence that a certain class of reaction-diffusion systems can exhibit chemical turbulence equivalent to Nikolaevskii turbulence. The distinctive characteristic of this type of turbulence is that it results from the interaction of weakly stable long-wavelength modes and unstable short-wavelength modes. We indirectly study this class of reaction-diffusion systems by considering an extended complex Ginzburg-Landau (CGL) equation that was previously derived from this class of reaction-diffusion systems. First, we show numerically that the power spectrum of this CGL equation in a particular regime is qualitatively quite similar to that of the Nikolaevskii equation. Then, we demonstrate that the Nikolaevskii equation can in fact be obtained from this CGL equation through a phase reduction procedure applied in the neighborhood of a codimension-two Turing--Benjamin-Feir point.Comment: 10 pages, 3 figure

    Interplay between interference and Coulomb interaction in the ferromagnetic Anderson model with applied magnetic field

    Full text link
    We study the competition between interference due to multiple single-particle paths and Coulomb interaction in a simple model of an Anderson-like impurity with local-magnetic-field-induced level splitting coupled to ferromagnetic leads. The model along with its potential experimental relevance in the field of spintronics serves as a nontrivial benchmark system where various quantum transport approaches can be tested and compared. We present results for the linear conductance obtained by a spin-dependent implementation of the density matrix renormalization group scheme which are compared with a mean-field solution as well as a seemingly more advanced Hubbard-I approximation. We explain why mean-field yields nearly perfect results, while the more sophisticated Hubbard-I approach fails, even at a purely conceptual level since it breaks hermiticity of the related density matrix. Furthermore, we study finite bias transport through the impurity by the mean-field approach and recently developed higher-order density matrix equations. We find that the mean-field solution fails to describe the plausible results of the higher-order density matrix approach both quantitatively and qualitatively as it does not capture some essential features of the current-voltage characteristics such as negative differential conductance
    corecore