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Abstract

In the past decade there has been a trend towards studying ever smaller
devices. Improved experimental techniques have made new experiments
possible, one class of which is electron transport through molecules and ar-
tificially manufactured structures like quantum dots. In this type of systems
screening plays a much less significant role than in bulk systems due to the
reduced size of the objects, therefore making it necessary to consider the
importance of correlations between electrons.

The work presented in this thesis deals with quantum transport through
strongly correlated systems using the density matrix renormalization group
(DMRG) method. We present two DMRG setups for calculating the lin-
ear conductance of strongly correlated nanostructures in the infinitesimal
source-drain voltage regime. The first setup describes the leads by modi-
fied real-space tight-binding chains, whereas the second describes the leads
in momentum-space. We benchmark each of these schemes against exact
Greens function results for the conductance in the non-interacting limit,
thus demonstrating the accuracy of the lead descriptions.

We first use the DMRG implementations to calculate the conductance of
an interacting spinless resonant 7 site chain, studying the effect of repulsive
interaction inside the chain. We demonstrate that both weak and strong in-
teractions inside the chain lead to Coulomb blockade renormalization of the
resonances in the conductance spectrum. Additionally the strongly interact-
ing case sharpens the resonances significantly, such that strong interaction
inside the chain tends to suppress the off-resonance transport.

Next we consider interacting resonant level models, studying the effect
of repulsive interaction on the contact links. We demonstrate that even a
small leak of the interaction in the system onto the contact links leads to
a strong enhancement of the off-resonance transport, and further that this
behavior is non-monotonic. By considering both a single level model and
short interacting chains we demonstrate that the off-resonance transport
enhancement is stronger than the corresponding suppression when having
the interaction inside the chain, and conjecture that the enhancement by
interacting contacts is universal. This result challenges the commonly used
division between interacting transport region and non-interacting leads, and
shows that care should be taken when making this partitioning, particularly
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regarding the interaction.
Finally we consider a spintronics model known as the ferromagnetic An-

derson model with an applied magnetic field. The model uses spin-polarized
leads and the magnetic field is applied to the transport level at an angle
with the direction of polarization. Thus both coherence and correlation ef-
fects are important in this model, and the methods applied should be able
to handle both these effects rigorously. We present the DMRG setup for
this model and benchmark against existing Greens function results for the
model. Then we present initial DMRG results demonstrating the ability of
the DMRG setup to provide accurate results for this model. We discuss the
effects of the various parameters in the model, and finally compare perturba-
tive results in the cotunneling regime with the DMRG results, and thereby
quantitatively confirm the range of validity of the perturbative approach.



Dansk resume

I det seneste årti har der været en tendens til at studere stadigt mindre kom-
ponenter. Gennem forbedrede eksperimentelle teknikker er det blevet muligt
at studere nye eksperimenter, hvoraf en type er elektron transport gennem
molekyler og kunstigt fremstillede strukturer, s̊asom kvanteprikker. I denne
type systemer spiller screening en meget mindre rolle end i makroskopiske
systemer p̊a grund af den betydeligt reducerede størrelse af disse objekter,
s̊aledes at det er nødvendigt at overveje vigtigheden af korrelationer mellem
elektronerne.

I denne afhandling behandles emnet elektron transport gennem stærkt
korrelerede systemer ved brug af metoden “the density matrix renormaliza-
tion group” (DMRG). Vi præsenterer to setups for beregning af konduk-
tansen af stærkt korrelerede nanostrukturer ved lineært p̊atrykt spænding.
Det første setup anvender en real-rums repræsentation af elektroderne i form
af tight-binding kæder, hvorimod det andet setup repræsenterer elektroderne
i impuls-rummet. Vi tester nøjagtigheden af begge disse setups ved sam-
menligning med eksakte Greens funktion resultater for konduktansen i den
ikke-vekselvirkende grænse, og demonstrerer derved nøjagtigheden af de an-
vendte elektrode beskrivelser.

Vi anvender først DMRG implementationerne til at beregne konduk-
tansen for en spinløs 7 niveau kæde, og fokuserer p̊a effekten af frastødende
vekselvirkning inde i kæden. Vi viser at b̊ade svag og stærk vekselvirkning
inde i kæden medfører en Coulomb blokade renormalisering af resonanserne i
konduktans spektret. Derudover er resonanserne i det stærkt vekselvirkende
tilfælde betydeligt skarpere end i det ikke-vekselvirkende tilfælde, s̊aledes at
stærk vekselvirkning inde i nanostrukturer undertrykker elektron transport
n̊ar systemet ikke er præcis resonant.

Derefter behandles vekselvirkende korte resonante kæder, hvor vi fo-
kuserer p̊a betydningen af frastødende vekselvirkning p̊a kontakterne. Vi
viser at selv en lille spredning af vekselvirkningen fra systemet ind i kon-
takterne giver en stærk forøgelse af transporten n̊ar systemet ikke er præ-
cis resonant, samt at denne afhængighed ikke er monoton. Vi behandler
b̊ade enkelt niveau modeller samt korte resonante kæder, og viser derved
at transport forøgelsen ved vekselvirkende kontakter er stærkere end den
tilsvarende transport undertrykkelse ved et stærkt vekselvirkende system,
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hvilket indikerer at transport forøgelsen ved vekselvirkende kontakter er
universel. Mange teoretiske metoder anvender en principiel sondring mellem
vekselvirkende transport region og ikke-vekselvirkende elektroder. Vores re-
sultat viser at stor p̊apasselighed skal udvises n̊ar denne deling fastlægges,
især med hensyn til vekselvirkninger.

Endeligt studerer vi en spintronik model kendt som den ferromagnetiske
Anderson model med et p̊atrykt magnet felt. I denne model er elektroderne
spin-polariserede og transport niveauet p̊avirkes af et magnetisk felt der er
vinklet i forhold til spin-polariseringens retning. S̊avel korrelationer som
kohærens spiller en væsentlig rolle for denne model, s̊aledes at teoretiske
metoder anvendt p̊a modellen skal kunne h̊andtere begge disse effekter kor-
rekt. Vi præsenterer DMRG opsætningen for denne model, og tester denne
mod eksisterende eksakte Greens funktion resultater i den ikke-vekselvir-
kende grænse. Derefter viser vi de første DMRG resultater og demonstrerer
derved at opsætningen giver nøjagtige resultater for denne model. Dernæst
diskuterer vi de forskellige parametre i modellen, og endeligt sammenligner
vi DMRG resultaterne med perturbativ resultater i ko-tunnellerings græn-
sen, hvorigennem vi kvantitativt bekræfter gyldigheden af de perturbative
resultater for modellen.
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2 Introduction

1.1 History

Curiosity is one of mankind’s most powerful properties. It has lead us to the
search for explanations and connections in the surrounding world leading to
an ever increasing level of understanding of the world around us. From the
more basic understanding of the macroscopic world this quest for under-
standing has evolved into modern science, one branch of which is physics.

It is hard to define a sharp starting point for the solid state branch of
physics, but one threshold would be the early models of solids by Ernest
Rutherford [1]. Since then the field of solid state physics has evolved over
the successful atomic model due to Niels Bohr and to the complete under-
standing of the periodic table of the elements and a thorough understanding
of bulk materials in terms of electrical and mechanical properties.

For many years the theoretical models used in the description of elec-
tronic matter were mathematically simple, the primary reason being the
neglect of electronic interaction effects. The theories by Drude and Sommer-
feld [2] are examples of such models, considering non-interacting particles
in a constant potential. Despite their simplicity these models are capable of
explaining a variety of phenomena in solids – a success that can be traced
to the existence of screening that effectively limits the interaction between
particles [2].

Despite the success of these simple models they far from cover all ob-
served phenomena. For instance the different electric behaviors of metals
and semiconductors are not described by these models, and until the formu-
lation of Bloch’s theory of electron waves in lattices in 1928 [3], introducing
the concept of bandstructures, these questions remained unanswered.

However successful the theory of the non-interacting electron gas is, there
are phenomena not describable from this starting point. One prominent ex-
ample studied extensively in the solid state community since the 1950’s is
superconductivity. This phenomenon, that below a certain temperature the
resistance of certain materials drops to zero, was discovered accidentally by
the group of Kamerlingh Onnes in 1911. Much effort was put into devel-
oping an understanding of this phenomenon which in the end lead to the
formulation of the Bardeen-Cooper-Schrieffer (BCS) theory of conventional
superconductors in 1957 [4]. Interestingly the BCS theory is a weakly inter-
acting theory that does not rely on the strong Coulomb repulsion between
the electrons, but rather on interaction with the lattice. The lesson learned
from this field was that despite the success of the non-interacting electron
gas there exist phenomena, like superconductivity, that cannot be described
using this limit as a starting point, and where new ideas are needed.

Based on the understanding of metals and semiconductors a whole in-
dustry eventually grew out of condensed matter physics. Historically the
technological development within the semiconductor industry has progressed
almost exponentially, as predicted in 1965 by co-founder of Intel Corporation
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Gordon E. Moore and therefore often referred to as Moore’s law [5]. This
advance has been related to a miniaturization of the individual electronic
components, an approach that has been very successful historically.

Within basic science a similar miniaturization trend has been observed.
A fundamental question to ask is what happens when a current is passed
through some device, which could be a molecule, an engineered structure,
or something else. As experimental techniques improved ever smaller such
devices were considered, and attempts to treat these systems theoretically
using existing models eventually failed. The explanation of this failure is two
fold: (1) The devices become quantized as the quantum regime is reached,
and (2) screening is reduced due to the reduced density of electrons [2].
Without screening electrons interact through the full long range Coulomb
interaction leading to much stronger correlation between the electrons. A
simple example is the quantum dot in the Coulomb blockade regime, where
the transport through the dot depends on the actual, rather than the aver-
age, charge on the dot. Thus small devices are potentially both quantized
and correlated, such that many interesting quantum phenomena may occur
in these setups.

This emerging field initially denoted by mesoscopic physics eventually
developed into nanoscopics and molecular electronics. As of present much
attention is being devoted to transport through real molecules, for example
the buckyball C60 [6, 7] and benzene [8, 9]. At the academic level such
devices are interesting due to the physics involved and at the technological
level they are interesting as candidates for the building blocks of future
electronics.

Theoretically and mathematically the area of transport in quantum sys-
tems is difficult for several reasons. The quantum nature of these systems
makes an exact numerical description unfeasible due to the exponentially
large Hilbert space. On the other hand the possibility for reduced screen-
ing may make the mathematically simple approximations such as mean-field
theory insufficient as the few particle nature of these devices (as opposed
to thermodynamically many) require a correct treatment of interaction and
correlation effects between the electrons. Or in other words a more rigorous
quantum mechanical treatment may be required.

In a transport setup a further complication is added in the form of non-
equilibrium conditions. Whereas equilibrium quantum mechanics is a well
established field there are still many open questions in non-equilibrium trans-
port. An essential difference between the two is the distribution of states;
where equilibrium uses the Boltzmann thermal weight it is not a priori ob-
vious what distribution to use in non-equilibrium. Also the tools applicable
are very different; where the variational principle has been very successful
for equilibrium situations, such an approach cannot easily be generalized to
non-equilibrium. For instance in a transport setup this is illustrated by the
fact that energy is gained by moving particles between the reservoirs.
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Many different schemes to treat electronic transport have been suggested
and it is not yet clear how these different approaches are connected, or if they
indeed agree in the relevant limits. Combining further interaction effects and
non-equilibrium transport leads to a physical regime where little knowledge
is well established and much work is still to be done.

In Chap. 2 we discuss briefly some of the alternative approaches to the
kind of systems studied here, in particular perturbative methods, the flow
equation method, the functional renormalization group method, embedding
methods, numerical renormalization group based methods, quantum Monte-
Carlo based calculations, and density functional theory based methods.

1.2 The density matrix renormalization group

The idea of renormalization in solid state physics can be traced back to
Kadanoff in the 60’s [10] who employed a blocking procedure for spin clus-
ters to formulate scaling relations for critical exponents. Although not really
rigorous Kadanoff’s spin blocking provides a very nice picture of the idea
of renormalization procedures – to reduce the number of degrees of freedom
without changing the mechanisms of the model but at the cost of changed
coupling constants. Iterating the blocking scheme one hopes to eventually
end up with a model that represents the physics of the original model but
with a manageable number of degrees of freedom. In other words some
degrees of freedom have been truncated to yield a more feasible model de-
scribing the same physics.

One very successful implementation of renormalization is Wilson’s Nu-
merical Renormalization Group, NRG [11, 12]. Probably NRG is most fa-
mous for solving the Kondo model but over the years much effort has been
put into expanding the applicability of NRG to new problems and proper-
ties, for instance the calculation of transport phenomena [13]. The NRG
uses a blocking scheme in momentum-space, adding well separated energy
shells to the system, and selects the states to keep by energy.

If one considers a real-space blocking scheme rather than the momentum-
space blocking of NRG and uses the NRG state selection by energy, the pro-
cedure fails. Analyzing the problem related to the joining of two real-space
blocks leads to the conclusion that the hard wall boundary conditions in
combination with the NRG state are closely related to the failure. The NRG
state selection uses the lowest energy eigenstates to represent the physics at
small energy-scales – wavefunctions of which all have nodes at the hard wall
boundary. Thus joining the wavefunctions of two real-space blocks in an
attempt to form the ground state wavefunction of the joined block yields
the inherently erroneous feature of a node in the joined wavefunction – il-
lustrating the problem of using state selection by energy in the real-space
blocking.
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An analysis like this lead Stephen R. White to the conclusion that an-
other setup was needed for the real-space blocking. Some of the boundary
problems can be remedied by using (a combination of) different boundary
conditions but the underlying problem that the low-energy wavefunctions
of subblocks do not constitute good building blocks for the (low-energy)
wavefunction of the joined block remains [14]. Inspired by his attempts to
resolve these issues by different boundary conditions White realized that a
superblock configuration would remedy the problem, and eventually he for-
mulated the density matrix renormalization group (DMRG) method [15, 16],
originally published in 1992. The general idea is to consider a system in the
presence of an environment rather than considering an isolated system – or
in terms of blocks to consider a superblock consisting of a system and an
environment block. As we show in App. A the projection onto the system
block in the superblock setup turned out to be equivalent to a singular value
decomposition of the wavefunction, which can be given an interpretation in
terms of the probability of a given eigenstate of the reduced density ma-
trix for the system in the presence of the environment. Thus the DMRG
states are the most probable eigenstates of the reduced density matrix and
White denoted this new scheme the density matrix renormalization group
method, although strictly speaking the transformations employed by the
DMRG method do not form a mathematical group.

In its original formulation DMRG is an iterative scheme seeking an opti-
mally projected Hilbert space. Originally it is formulated as a ground state
method in the sense that it optimizes the description of expectation values
in the ground state, or at least a few states, and DMRG can be viewed as
an iterative variational optimization for these quantities.

DMRG has received much attention in later years due to its capability to
handle strong correlations. Substantial effort has been put into expanding
the capabilities of the method to calculate dynamical properties [17, 18, 19],
extensions to two-dimensional systems [20, 21, 22], and real-time evolution of
systems [23, 24, 25], and today DMRG constitutes a very powerful numerical
technique applicable in a wide range of situations.

1.3 Outline

This work is aimed at studying the effect on transport properties of inter-
action, particularly the limit of strong interaction. This work is limited to
the linear response regime for the applied source-drain voltage. However, it
is based on direct calculations of transport properties and does not rely on
extracting non-equilibrium properties from equilibrium quantities. Thus all
results presented in this work are approximation-free to the degree that fi-
nite system numerics can describe transport properties and to the truncation
error implicit in the density matrix renormalization method used.
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The philosophy is to consider simplified models incorporating the essen-
tial physical elements, correlations and coherence, and through the study of
these models gain an understanding of the physics of such systems. Current
experiments do allow the study of one-dimensional systems [26] such that
despite their simplicity the models studied theoretically here may provide
insight into the transport properties of experimentally studied systems.

The outline of the thesis is as follows: In Chap. 2 we present the theory
behind this work. We introduce the transport setup in Chap. 2.1, and
motivate the use of the DMRG method in this work. The DMRG itself
is introduced in Chap. 2.2, in particular the correction vector method is
considered. In Chap. 2.3 we review the two representations of the leads
used in this work, in real- and momentum-space, and discuss the strengths
and weaknesses of the two approaches. In particular the formulation of a
momentum-space representation for the leads is discussed in detail.

The work here has been centered on the linear response approach for the
source-drain voltage and in Chap. 2.4 we derive the general Kubo formula,
and discuss the resolvent formulations of the Kubo formula for conductance.
In Chap. 2.5 we proceed and derive resolvent formulations for the single
particle Greens functions. A few details regarding the discretization are
discussed, and finally the conductance evaluation from the spectral function
is derived.

When developing new calculational schemes it is essential to benchmark
these against well established results. In Chap. 2.6 two different benchmark-
ing schemes are discussed, the exact diagonalization used to benchmark the
DMRG truncation, and the Greens function method used to benchmark the
finite size effects. Furthermore the exact diagonalization scheme aids in fast
determinations of free parameters of the model, as discussed in Chaps. 3
and 4.

Proceeding to the physics part of the thesis we first consider spinless
models in Chap. 3. This part of the thesis is divided into two subparts: The
first deals with a resonant 7 site chain, and considers the effect of interaction
mainly inside the transport region. Using the real-space setup we show
that a strong repulsive interaction inside the transport region suppresses
the off-resonance transport, and provide a simple picture for the Coulomb
blockade renormalization of the resonances. Finally by recalculating some of
the results using the momentum-space setup we demonstrate the improved
energy resolution of the momentum-space setup compared to the real-space
setup.

The second part deals with short resonant chains and investigates the
effect of interaction on the contact links. For the resonant 7 site chain
it is shown that strong interaction inside the chain leads to a suppression
of the off-resonance transport. In this part we show that spreading the
interaction onto the contact links leads to a significant and non-monotonic
enhancement of the off-resonance transport. By considering chains of one,
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three, and five sites we demonstrate that this enhancement is stable, such
that even a small ‘leak’ of the interaction onto the contacts influences the
transport strongly, and conjecture that this feature is universal. This in turn
challenges the common distinction between interacting transport region and
non-interacting leads, and shows that care should be taken when making
this division, particularly regarding the interaction.

In Chap. 4 we consider a spintronics model known as the ferromagnetic
Anderson model with an applied magnetic field. This model exhibits both
coherence and correlation effects and is hence a challenge to treat theoreti-
cally. A different approach was taken to calculate the transport properties of
this model, using the Meir-Wingreen formula, rather than the direct evalua-
tion of the Kubo formula. We present the DMRG scheme for calculating the
spectral function, and further the conductance from the spectral function
using the Meir-Wingreen formula [27].

The model itself is presented in Chap. 4.1.1, and transcribed to a tight-
binding description in Chap. 4.1.2. In Chap. 4.1.3 and 4.1.4 we review the
implementation of the polarization and the DMRG setup for the model. In
Chap. 4.1.5 we present analytical results provided by Ph.D. student Jonas
N. Pedersen (Lund, Sweden) which are used to benchmark and compare to
the DMRG calculations. In Chap. 4.1.6 we benchmark the setup against
these results in the non-interacting limit. Having verified the description of
the leads we proceed and present DMRG calculations for a range of para-
meters and discuss the effects of the different parameters in the model.
In Chap. 4.1.7 we compare perturbative cotunneling results provided by
Ph.D. student Jonas N. Pedersen to the DMRG results and confirm the
range of validity of the perturbation theory.

In Chap. 5 we conclude the thesis by a summary of the main results
presented, and a short discussion of the open ends and possible extensions
to the presented work. Finally in Apps. A-D we provide detailed derivations
and implementation details. In App. A we discuss the DMRG state selection
and algorithms. App. B contains the derivation of the resolvent formula-
tions used throughout this work. In App. C we discuss the Greens function
calculation in the non-interacting limit of the spinless resonant chains con-
sidered in Chap. 3, and in App. D we discuss a few implementation details
and the hardware used during this project.
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In this chapter we review the calculational scheme and techniques de-
veloped and used in this work. First we introduce the transport setup and
discuss the conductance which we consider throughout this work. We men-
tion briefly some other methods applicable to the kind of systems considered
in this work and discuss strengths and limitations. Then we introduce the
numerical method used in this work, the density matrix renormalization
group (DMRG) method, and discuss particular aspects used in this context.
We then derive the Kubo formula for conductance and the resolvent form of
the single particle Greens functions, and discuss their evaluation using the
DMRG. Finally we illustrate the benchmarks used for the developed DMRG
setup, in terms of exact diagonalization and Greens functions, both in the
non-interacting limit.

2.1 Introduction to transport

In this chapter we introduce the transport setup that all work presented in
this thesis revolves around. We discuss the physical mechanism behind the
steady state transport, and the measure used in quantifying the transport.

In a transport setup the device is connected to a current or voltage
source that applies a source-drain voltage VSD across the device, and drives
a current I through it, as illustrated in Fig. 2.1. When the dimensions of the
device become sufficiently small the quantum nature of the device manifests
itself, such that the device is considered a finite system with quantized energy
levels. Typically a gate potential µg is applied to the device that shifts these

−

+

VSD
I

µg

Device

Figure 2.1: Generic two-terminal transport setup, where a source-drain voltage VSD

is applied across, and an electric current I is driven through the device. To the
device is applied a gate potential µg which can shift the energy levels in the device
up and down, depending on the sign of the potential.

discrete energy levels up and down in energy, depending on the sign of the
applied potential.

We specialize further to the zero temperature limit T = 0. The low den-
sity of electrons in the device reduces the screening and makes it necessary
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to consider the importance of correlations. By contrast the leads are usually
macroscopic and it is common to treat them as non-interacting, and since
the combined lead and current (or voltage) supply is a much larger system
than the device it is usually assumed that the leads are continuous and
structureless reservoirs of particles in local equilibrium. The coupling of the
leads to the device is modeled by a hopping process in the quantum mechan-
ical model of the setup, as will be explained in Chap. 2.3, and we consider
steady state situations such that there are no displacement currents, and
only tunneling currents are present.

µg

(a) When no levels are close to
being on-resonance the electron
transport mediated by the device
is suppressed.

µg

(b) Applying a gate potential that
tunes a level on-resonance opens
up transport through that level.

Figure 2.2: Schematic illustration of the transport mechanism; having all levels
off-resonance suppresses transport, while having a level nearly on-resonance opens
transport through that level. A gate potential applied to the device shifts the levels
in the device, such that a full scan of the gate potential yields a series of peaks in the
current. Notice that the levels illustrated in the figure need not be single particle
levels, but can be many particle levels. The figure indicates that the levels acquire
a width when coupled to the leads.

In the weak coupling limit the energy levels acquire only a modest width
from the broadening by the leads, and the transport mechanism can be il-
lustrated as follows: The direct tunneling between the leads is exponentially
suppressed by the distance between the electrodes and the device is needed
to mediate the electron transfer. From energy conservation arguments only
the electrons inside the bias window partakes in the transport, such that for
infinitesimal source-drain voltages, as considered in this thesis, the transport
takes place at the Fermi edge. Hence if all levels in the device are far away
from the Fermi edge, as illustrated in Fig. 2.2(a), transport is suppressed
and no current flows. Applying now a gate potential to the device such
that a single level is on-resonance, as illustrated in Fig. 2.2(b), transport
is allowed and a current flows. Since the levels inside the device acquire a
finite width due to the coupling to the leads, the level need not be precisely
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resonant to allow transport, such that shifting a level into resonance by the
gate potential yields a smooth transition from a low current to a high cur-
rent situation. Keeping the source-drain voltage fixed a full scan of the gate
potential is hence expected to reveal a series of smooth peaks in the current,
a maximum occurring each time a level is tuned exactly on-resonance, and a
valley when all levels are off-resonance. Another measure than the current,
used in describing the transport is the conductance, either the linear- or the
differential conductance, defined respectively as

glin =
I(VSD)

VSD
, (2.1a)

gdiff =
∂I(VSD)

∂VSD
. (2.1b)

The challenge considered in this work is the non-perturbative quan-
tum mechanical treatment of transport through strongly correlated sys-
tems. This task contains two different complications, the transport, or non-
equilibrium, and the correlations. Each of those is a complicated topic in
itself, and no methods are well established as providing general insight into
transport setups where both coherence and correlations are significant.

In this work we relax the first complication a bit, and consider linear
response in the source-drain voltage VSD → 0, such that the transport takes
place only at the Fermi edge. In this limit the linear and differential conduc-
tances are identical, and henceforth referred to simply as the conductance.
A similar behavior as for the current itself is found for the conductance,
such that having a level of the device on-resonance with the leads allows
transport and hence gives a high conductance, while having all levels in the
device off-resonance with the leads results in a low conductance. When the
system is fully transparent the conductance is maximal and has the value of
a conductance quantum, e2/h, per channel.

2.1.1 Alternative methods

We would like to briefly mention a few other applicable methods for the
kind of systems we consider in this work. The calculation of conductance
for strongly correlated systems has two different challenges, the interaction
and the applied source-drain voltage. The following list is not intended to
be complete, rather to mention some alternative methods.

Perturbation theory

When approaching a complicated system perturbation theory may be use-
ful. The key idea is to include increasing orders of some perturbation to a
known state, providing an increasingly more accurate description. For the
conductance there exists a number of approaches from which we mention
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two prominent examples important in this work. (1) The linear response
(Kubo) formula [28], and (2) the Keldysh theory [29, 30, 27].

(1) The Kubo formula provides an exact result for the first order cor-
rection in some perturbation. The use of the Kubo formula in this work is
for the response of the current to linear order in the applied source-drain
voltage. The advantage of the Kubo formula in this connection is that no
assumptions are made regarding the unperturbed system, only a suitable
method is needed to treat the ground state of this system, such that e.g. all
correlation effects can be kept exactly within this setup, leading to a prin-
cipally exact method.

(2) The Keldysh theory is a powerful tool for finite temperatures and
voltages. While formally exact the Keldysh results in practice often involve
two different perturbative expansions, in the Coulomb interaction and in
the coupling of the transport region and leads. Thus even calculating the
ground state of the unbiased and interacting system involves a perturbative
expansion, on top of which the complication of a voltage perturbation should
be added.

Higher order resummation schemes in turn lead to the renormalization
group (RG) methods, where the leading order contributions are taken into
account, either numerically or analytically.

Flow equation method

Analytical renormalization group methods that include an energy depen-
dence should be mentioned in this connection because they are applicable
to large voltage situations in transport setups, and an example is the flow
equation method.

The flow equation method [31] consists of a series of infinitesimal unitary
transformations to make the Hamiltonian successively more energy diago-
nal, leading eventually to a diagonal effective Hamiltonian. Thus the method
retains information on all energy scales, which makes it well suited for fi-
nite bias transport calculations. An obvious advantage of the flow equation
method is that knowledge of the energy eigenvalues of the Hamiltonian pro-
vides exact time evolution, and hence long-time behavior can be studied.

The flow equation approach is in principal exact, but in practical calcu-
lations the perturbative expansion of the generator for the diagonalization
transformation is truncated. Thus the method is perturbative in the inter-
action and in practice it works well when the systems are not too strongly
correlated.

Functional renormalization group

In the functional renormalization group [32] the starting point is an exact
hierarchy of RG equations, that in principal facilitates approximation free
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calculations. However in practical applications this hierarchy is truncated,
often at the second order correction for the interaction vertex [33].

Contrary to the flow equation method the functional RG problem for
finite bias transport situations has not yet been solved. Furthermore due to
the truncation the functional RG is in practice perturbative in the interac-
tion.

Embedding methods

Another class of approaches to steady state transport with infinitesimal
source-drain voltage are the embedding methods suggested in Refs. [35, 36],
where the system through which transport is studied is embedded in a large
lead, and the combined system is closed to a ring. Passing a flux through
the ring one can calculate the flux dependent ground state energy, and from
this the current in the ring and the transmission amplitudes [37]. Finally
by using the Landauer formula [38, 27] the linear conductance of the system
can be calculated. Only single channel physics in the linear source-drain
voltage regime can be treated within this method, and the applicability of
the method depends on the ground state calculation. Refs. [39, 40, 41] use
the DMRG to evaluate the ground state, resulting in an overall method that
is able to handle correlated systems. Since an essential step in the conduc-
tance calculation is a scaling to large lead sizes the method is expensive
when using direct numerical methods like DMRG, which limits the system
sizes that can be treated.

A different kind of embedding method was used in Refs. [42, 43], where
an exact diagonalization of an extended molecule, consisting of the transport
region and part of the leads, is combined with a perturbative coupling of the
remaining parts of the leads represented by appropriate self-energies. The
overall method is thus perturbative, and only provides reliable results when
the correlation cloud is kept within the extended molecule that is treated
exactly.

Numerical renormalization group

There are several approaches to the conductance using NRG. However, all
NRG based calculations are limited by the logarithmical discretization, and
cannot use more general discretization schemes since the NRG relies on a
clear separation of energy scales. While well suited for Fermi edge physics
the logarithmic discretization is not well suited for calculations away from
the Fermi edge where the logarithmic discretization is inherently coarse-
grained. For more complicated setups, for example resolving the finite fre-
quency spectral function, a flexible discretization scheme is needed, such
that the discretization can be tailored to the problem at hand.

One approach to the conductance is to extract phaseshifts from the NRG
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[44, 45, 46, 47] and evaluate the conductance from this [48]. The extraction
of phase shifts is, however, limited to a completely symmetric setup.

Another approach using the NRG is to evaluate the spectral functions
[49] and use the Meir-Wingreen formula [27] to evaluate the conductance.
This approach is thus limited to systems having proportional coupling to
the leads.

Quantum Monte-Carlo

Considering the linear source-drain voltage transport regime, the Kubo for-
mula for conductance applies, and various methods can be used to evaluate
it. Using the quantum Monte-Carlo method to evaluate the linear response
result yields a principally approximation free method. In Ref. [50] quantum
Monte-Carlo simulations were used to evaluate a linear response correlator
similar to the ones used in this work. The calculation was performed for a
bosonic system obtained by a Jordan-Wigner transformation of the original
one-dimensional fermionic model. The Monte-Carlo calculations were per-
formed for imaginary frequencies, and followed by an extrapolation to zero
frequency to get the DC conductance. The Monte-Carlo calculations rely on
a finite but low temperature. This in turn limits the size of the interacting
system for which a reliable zero frequency extrapolation of the conductance
can be performed since smaller frequencies, and hence smaller temperatures,
are needed.

Density functional theory

We also mention the density functional theory (DFT) [51, 52], although the
limit considered in this work is quite different from the limit considered in
DFT based calculations.

In DFT it is used that there is an exact connection between the electron
density and the ground state of a given system, such that a variational search
for the density in principle leads to a variational determination of the ground
state. By mapping the physical problem onto an effective non-interacting
problem (the Kohn-Sham system) the wavefunction, and hence the density
can be found. In practise this involves a self-consistency between the inter-
acting electron density and the non-interacting Kohn-Sham Hamiltonian.
This scheme is in principle exact, but the functional linking the ground
state density and the ground state energy is not exactly known, in partic-
ular the exchange-correlation functional is unknown. Thus approximations
for this functional are used, leading to an overall approximate theory.

The strength of ground state DFT is that it is an ab initio approach,
where only very fundamental parameters are used as input, such that every-
thing else is determined by the calculation itself. DFT has been very success-
ful for electronic structure calculations on large samples, where geometrical
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relaxation of a structure can be used to calculate e.g. crystal structures or
phonon modes [53].

In practice DFT is only applicable in the absence of strong correlations,
since the interaction is often treated at the mean-field level within the local
density approximation (LDA). Recently the exact functionals for the DFT
on a lattice have been calculated using DMRG [54], in order to investigate
whether the ground state DFT is sufficient to describe linear transport from
a Kubo formula for the Kohn-Sham particles.

This work

In this work we focus on linear response in the applied source-drain voltage,
which implies focusing on physics taking place at the Fermi edge of the leads.
The linear response in source-drain voltage limits the scope of the method,
such that high-bias situations are not described by this setup. On the other
hand we devise a non-perturbative direct calculational method capable of
treating both correlations and coherence rigorously. To this end we use
the density matrix renormalization group (DMRG) method, and combine it
with either a linear response (Kubo) approach in source-drain voltage, or an
evaluation of the single particle Greens functions. Using the Meir-Wingreen
formula [27] the conductance in the linear source-drain voltage limit can be
calculated from the zero frequency spectral function.

The developed scheme benefits from a high degree of freedom in choosing
the discretization. For our purpose of linear response conductance it turns
out to be crucial to have a linear discretization on the low-energy scale close
to the Fermi edge, as is discussed in Chap. 2.4.3. Thus this method is appli-
cable in some situations where the methods above are not since we treat both
correlations and coherence non-perturbatively, and likewise inapplicable in
some situations where the same methods above do apply, the most obvious
limitation being the DC linear response in the applied source-drain voltage.
Further, since the DMRG approach is non-perturbative, this method pro-
vides a unified description of the weakly and strongly interacting, as well as
the weakly and strongly coupled limits.

In the next sections we review the different parts of this method, in
particular the DMRG method, and the Kubo formula for linear response in
general and for conductance in particular. Finally we consider the evalua-
tion of the single particle Greens functions using the DMRG setup. From
the Greens functions eg. the conductance can be evaluated using the Meir-
Wingreen formula, and we discuss this method briefly.

2.2 The density matrix renormalization group

Theoretical calculations on quantum mechanical models often involve some
level of approximation. The reason for this is found when attempting exact
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numerical calculations, as the Hilbert space of quantum models grows expo-
nentially with the size of the system considered. Hence exact calculations
soon face the problem that the Hilbert space becomes larger than what is
feasible for the purpose at hand or even possible on the computers available.
In many situations it is intuitively clear that not all information contained
in the full description is relevant in certain limits, and hence a truncation is
necessary as well as possible.

The density matrix renormalization group (DMRG) method is one choice
of a truncation scheme applicable to quasi-one-dimensional systems. In the
original formulation by White [15, 16] the DMRG is an iterative scheme
seeking an optimally projected Hilbert space for ground state properties.
The source of inspiration for White was the failure of a real-space blocking
scheme when using a state selection by energy [14]. He traced this failure
to the hard-wall boundary conditions of the isolated real-space blocks, and
eventually formulated a real-space blocking scheme by adding an environ-
ment to the system. For this blocking scheme he showed that the optimal
states to keep for the system are the most probable eigenstates of the re-
duced density matrix – leading to the name density matrix renormalization
group.

The work presented in this thesis uses the DMRG extensively. In this
part we first present some terminology and basic concepts, and then proceed
to review the two different implementations used in this work. In App. A we
derive the state selection used in DMRG, and discuss the two algorithms. For
further details on DMRG we refer to the original papers by White, Refs. [15,
16], or one of the many reviews of the method, for instance Refs. [14, 55,
56, 57, 58].

Environment

Figure 2.3: General superblock configuration, consisting of a system and an environ-
ment. The optimal states to keep for the system are the most probable eigenstates
of the reduced density matrix, found by tracing out the environment degrees of
freedom.

2.2.1 Basic concepts

In the original formulation DMRG is an iterative method for optimizing the
basis to describe certain properties on a decimated Hilbert space. Since then
the method has been expanded to target many different physical setups and
situations, among others the description of finite frequency properties [17]
and also time evolution has been treated using DMRG [23, 24, 25]. In this
work we use the correction vector DMRG [59, 18, 19] to evaluate resolvent
equations, as will be explained in Chap. 2.2.3. In order to clarify the ex-
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planation of the method presented in this chapter we start by introducing
some basic concepts and terminology used in the DMRG community and
throughout this chapter.

The DMRG seeks an optimally projected Hilbert space by iteratively
calculating the optimal basis states for the system using the reduced density
matrix. The states used in the construction of the reduced density matrix are
denoted target states. Multiple states can be targeted simultaneously and
a faithful description can only be expected for the target states. In general
adding more target states to the reduced density matrix reduces the accuracy
for a fixed number of DMRG states kept in the truncation. The number of
states that successfully can be put into the density matrix is limited, and
DMRG is thus often referred to as a few state method. One consequence is
that the description of finite temperatures is possible, but only in the low
temperature limit where a few states in the Boltzmann distribution suffices.
In this work we only consider the strict zero temperature limit.

The basic DMRG setup is a superblock consisting of a system block and
an environment block, as seen in Fig. 2.3. The essential ingredients of the
DMRG scheme are the enlargement of one of the blocks, and the truncation
back to a given number of states for this block. A DMRG step thus consists
of adding to the system block (typically) a single site and then truncating
back to a given basis size. The selection mechanism for the truncation is the
magnitude of the eigenvalues of the reduced density matrix ρ for the system,
found by tracing out the environment degrees of freedom, and the kept states
can be given a probabilistic interpretation since ρ is trace normalized. The
reduced density matrix represents the system in the presence of a bath that
has been traced out, and hence mimics the coupling to a bath.

2.2.2 Algorithms

Using this truncation procedure in a systematic way leads to the essential
DMRG algorithms denoted the infinite and finite lattice algorithm. In the
infinite system algorithm the superblock is enlarged in each step, whereas
the finite system algorithm keeps the size of the superblock fixed. The finite
lattice algorithm consists of a number of sweeps where the role of system
and environment is reversed after each such sweep, and where the division
between the system and environment is shifted a single site at each step in
the sweep, as illustrated in Fig. 2.4. In this fashion the DMRG iteratively
optimizes the description of the target states used in the construction of
the reduced density matrix. For a more elaborate review of the DMRG
truncation, state selection, and algorithms we refer to App. A.

Typically one truncates to a fixed number of states per block but this
is just one possible choice. Another choice is to keep the size of the target
space fixed, that is the subspace of the full Hilbert space of the superblock
within which the target state is calculated. These two schemes differ in
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Figure 2.4: Illustration of the finite lattice DMRG algorithm. Each step in the
algorithm moves the point of division between the system- and environment blocks
by one site, and truncates the Hilbert space of the system block to the desired size.
When the end of the superblock is reached the role of system and environment is
reversed. The sweeping is usually continued until convergence has been reached.

the strongly asymmetric superblock configuration, where one block is much
larger than the other. Consider for instance a situation where one block,
denoted A, is very small and the remaining part of the superblock, denoted
B, is large. Then also the corresponding particle numbers of the two blocks
are very different, NA ≪ NB . To target a subspace of the full Hilbert space
of a fixed particle number, N = NA +NB , the subspace of block B used in
the construction of the target space must be enlarged to cover larger particle
numbers NB in order to ‘compensate’ for the small NA, compared to the
case where the blocks are of more equal size. This illustrates the difference
in the two truncation schemes.

Whenever truncations are made it is relevant to ask what is the im-
portance of the part that is discarded, or equivalently how reliable are the
results coming from the calculation. In DMRG a commonly used measure
of the truncation error is the weight of the discarded states of the reduced
density matrix ρ. Since ρ is trace normalized this is indeed a measure that
goes to zero in the limit of keeping all states, and goes to one in the limit
of discarding everything. But it is an indirect measure that does not re-
veal information about the error committed for an arbitrary operator, and
as such it is more to be considered a guideline to the error than an actual
error measure. It is a further complication that the DMRG consists of a
high number of steps employing a truncation at each step. Having an error
estimate for a single step therefore does not necessarily give an estimate for
the full calculation.

Another commonly used measure for the truncation error is the dis-



20 Theory

carded entropy, calculated as SD = −TrDisc. States [ρ log ρ]. This measures
the amount of bipartite entanglement between the blocks for the discarded
states but as the discarded weight it is an indirect measure.

2.2.3 Correction vectors

In order to evaluate resolvent equations like the conductance or the single
particle propagator considered in Chap. 3 and 4 within the DMRG frame-
work a few considerations must be made. To evaluate these resolvents the
correction vector DMRG [59, 18, 19] is used.

In general the resolvent equations considered in this work have the form

〈
ψ0

∣
∣A

1

f(H0, E0, ω, iη)
B

∣
∣ψ0

〉
, (2.2)

where f(H0, E0, ω, iη) is a generic, typically polynomial, function of the
Hamiltonian (H0), the ground state energy (E0), frequency (ω), and the
finite size broadening parameter (η). Rather than inverting the Hamiltonian
matrix to calculate the resolvent in Eq. (2.2) the problem is rephrased as a
linear set of equations,

1

f(H0, E0, ω, iη)
B

∣
∣ψ0

〉
=

∣
∣φB

〉
⇒

B
∣
∣ψ0

〉
=

[
f(H0, E0, ω, iη)

]∣
∣φB

〉
. (2.3)

It is cheaper to solve this linear system for
∣
∣φB

〉
using a linear solver, than

explicitly inverting the Hamiltonian matrix. Having solved for the real and
imaginary parts of the correction vectors

∣
∣φA,B

〉
=

∣
∣φR

A,B

〉
+ i

∣
∣φI

A,B

〉
, the

resolvents can be evaluated as vector overlaps, for instance for the resolvent
in Eq. (2.2)

〈
ψ0

∣
∣A

1

f(H0, E0, ω, iη)
B

∣
∣ψ0

〉
=

〈
ψ0

∣
∣A

∣
∣φB

〉
. (2.4)

In the DMRG calculations we target apart from the ground state
∣
∣ψ0

〉
also

the real and imaginary parts of the relevant correction vectors
∣
∣φA

〉
and

∣
∣φB

〉
, as well as the states A

∣
∣ψ0

〉
and B

∣
∣ψ0

〉
to ensure that the DMRG basis

is suitable for describing all these states properly [18, 19]. Thus we target
typically 7 states in the DMRG calculations and specific examples hereof
are given for the Kubo formula in Chap. 2.4 and for the Greens functions in
Chap. 2.5.

2.3 DMRG implementations

This work has been centered around using the linear response formula for
conductance within different models. However in order to achieve the energy
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resolution needed to perform physically relevant calculations care should be
taken in the representation of leads used, the development of which consti-
tutes a significant part of this work. The central task in this connection is to
reduce the effects of the finite system, such that a finite and small number
of lead sites can model the continuous lead properly. The implementations
reviewed in the present thesis are those implemented by Peter Schmitteck-
ert in his DMRG code NRG++, which is the code used in all calculations
presented in this thesis.

Since the DMRG is generically a few state method the description of
finite temperatures is limited; in principle finite but low temperatures could
be described. We have not investigated the temperature dependence in this
work, but limit the focus to the strict zero temperature limit, such that all
averages reduce to ground state averages. Hence in all calculations presented
in this thesis the zero temperature limit is understood, although sometimes
not specified explicitly.

We first discuss some issues for describing physics on finite size sys-
tems. This discussion is intended to highlight some of the issues to be taken
into account when implementing this setup. In this work we have applied
two different description of the leads, in real- and momentum-space, and
we review both setups in some detail, discussing advantages and disadvan-
tages of each setup. In particular we discuss the discretization used in the
momentum-space representation of the leads.

2.3.1 Physics on finite size systems

The main challenge in describing transport within the setup used here is the
description of the leads. As discussed in Chap. 2.1 the leads and voltage
supply are so large that they are considered infinite. Using a method like
the DMRG only finite, and often quite small, systems can be treated. Hence
the main challenge is the discretization of the continuous leads to describe
the continuum using a small number of sites.

In finite system physics a generic feature is the broadening parameter,
in this work denoted η, due to the finite size of the system. This broadening
is necessary in order to model the continuum of the infinite leads on a finite
system, such that the finite η mimics the missing (infinite) part of the lead.
On the other hand η also sets a scale below which physics is no longer
described correctly because of the very same broadening. In this context
the broadening is thus limited by physical arguments, from below because
it has to be larger than the finite size level splitting to allow transport, and
from above by the broadening it introduces into the system.

One manifestation of the finite size of the system is that different calcula-
tions of the same physical property, e.g. conductance, may result in slightly
different results. Naturally, significant deviations would be a sign that the
physics is not resolved properly, but small deviations are expected and also
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found numerically. Furthermore, different approaches to the same physical
quantities may exhibit different finite size scalings, such that one approach
may be superior compared to another in terms of speed or accuracy. Explicit
examples of these effects are discussed in Chaps. 3 and 4.

Different approaches have different ways of dealing with the broadening
by η. In this work we present two different possibilities of describing the
leads within the DMRG framework, one being in real-space, the other being
in momentum-space. The momentum-space approach is in most aspects
superior to the real-space approach but we nevertheless review both as the
momentum-space approach requires more consideration in the numerical
implementation. The real-space approach is straight forward to implement
but has a number of numerical issues that need attention, in particular
when attempting to resolve narrow resonances. At the end of the day the
resolution attainable with the real-space method is limited compared to the
momentum-space method.

2.3.2 Particle-hole symmetry

This work considers the dependence of interaction on the transport proper-
ties, specifically the conductance. When specifying the interaction there is a
choice to be made between using particle-hole symmetry or not. The differ-
ence between the two is an interaction dependent compensating potential.

For example the particle-hole-symmetric density-density interaction be-
tween sites i and j is

V
(

ni −
1

2

)(

nj −
1

2

)

= V
(

ninj −
1

2
(ni + nj) +

1

4

)

, (2.5)

where nℓ = c†ℓcℓ is the local density operator of site ℓ. The term ninj is
the non-particle-hole-symmetric interaction and the term −1

2(ni +nj) is the
compensating potential. The constant background term is neglected.

In this work we mainly use particle-hole-symmetric interactions. For
the resonant chains with an odd number of sites we consider in this work
the particle-hole-symmetric interaction has the advantage that the central
resonance of the spectrum is pinned at zero gate potential, because of the
compensating potential. Thus benchmark calculations for the resonant value
for this resonance is possible without having to locate the resonance first.

For some models the effect of the compensating potential is merely a
shift of the conductance spectrum whereas the spectrum itself is unchanged.
For those models the particle-hole symmetry is a calculational convenience
that does not change the physics. For other models the behavior changes
depending on whether the interaction is particle-hole-symmetric or not.
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2.3.3 Real-space leads

The real-space approach was published in Ref. [60], and many results pre-
sented in this part of the chapter is based on that paper. Perhaps the
simplest approach to modeling the leads is as finite one-dimensional non-
interacting tight-binding chains, as illustrated in Fig. 2.5. The DMRG was
originally formulated for one-dimensional chains and is directly applicable.

However for unmodified tight-binding chains the finite level splitting,
that sets the scale for the broadening parameter η, scales inversely propor-
tional with the system size, M−1, which means that to reduce the magnitude
of η significantly a much bigger system is needed. Further, since DMRG is
a relatively expensive numerical method, such a direct approach gives only
a poor resolution.

To reduce the finite size effects a number of modifications to the tight-
binding chain description of the leads are needed, and in this setup we use
a scaling of the boundaries to reduce the finite size effects of the setup.

Nanostructure, MS sites

Real-space leads, ML/2 sites each

M = MS +ML

2 n1n1 − 1 n2n2 − 1 M

MS, tD, V

γVγV

tt t t tt tt t tt′t′

1

Figure 2.5: Real-space DMRG setup: The leads are modeled by non-interacting
tight-binding leads coupled to the interacting nanostructure by hopping matrix
elements t′ = tL/R. The hopping and interaction inside the nanostructure is denoted
tD and V respectively, and the leaking of interaction into the contacts is controlled
by γ. Scaling of the boundaries is necessary to reduce the finite size effects, as
discussed in the main text.

Scaled boundaries

As discussed in Chap. 2.3.1 the magnitude of the broadening parameter η
is bounded by physical arguments; from below by the fact that it should
be larger than the finite size level splitting to allow transport, and from
above by the broadening of physical results by any finite η, and should
thus be significantly smaller than the width of the resonances that is sought
resolved.

To improve the finite size scaling and to facilitate the use of sufficiently
short leads we use exponentially damped boundary conditions (DBC), de-
creasing the last MD hopping matrix elements exponentially towards the
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end of the leads as illustrated for the right lead in Eq. (2.6),

[−t, · · · ,−t,−t, · · · ,−t
︸ ︷︷ ︸

MD

] → [−t, · · · ,−t,−td,−td2, · · · ,−tdMD

︸ ︷︷ ︸

MD

], (2.6)

where d < 1 is a damping parameter defining the rate of the exponential
damping. The damping introduces two more parameters in the model, the
number of damped links MD and the damping factor d, and these must take
values such that physical quantities do not depend sensitively on the partic-
ular choice. An example of the determination of d and the corresponding η
is given in Chap. 3.1.

Modified boundary conditions to reduce finite size effects in connection
with DMRG were introduced by Vekic and White [61, 62] under the name of
soft boundary conditions. Note that the exponential damping used here is
essentially a real-space representation of the Wilson chain used in the NRG,
and hence models a logarithmic discretization around εF = 0 for half filling.
This ‘exponentially dense’ spectrum around the Fermi energy is the main
rationale for using these boundaries, see also App. D where we show by use
of exact diagonalization the effect of the damped boundaries on the energy
spectrum in the non-interacting case.

The improvement of the finite size scaling relies on two properties of the
DBC’s: (1) They allow for the use of a smaller η, and (2) serve as a particle
bath for the nanostructure. The first property is due to the exponentially
small finite size level splitting at the Fermi energy at half filling when using
the DBC’s. The second property can be understood from the fact that the
energy cost of adding or removing a particle from the damped region is of
the order of the kinetic energy given by the exponentially small hopping
matrix element.

In principle these two properties of the DBC’s could be obtained by using
longer undamped leads. However these leads would have to be unrealistically
long to reach the same finite size level splitting as facilitated by the DBC’s,
such that this approach is impossible within a direct and expensive numerical
scheme like DMRG.

Scaling sweeps

While physically desirable the damped boundary conditions involve several
numerical challenges. The gradual decoupling of the outermost part of the
leads makes the Hamiltonian matrices worse conditioned, leading to harder
linear systems to solve in the resolvent equations.

Physically strong damping is desired, but numerically this involves prob-
lems. In order to make use of the particle bath property of the damped re-
gions particles must be moved from the gated nanostructure to the damped
regions. Hence we face a paradox: strong damping makes for a better par-
ticle bath, but also makes it much harder to move the particles from the
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nanostructure to the damped region due to the decoupling involved. Hence
particles or holes may become trapped on the far end of the Wilson chain
because of the decoupling, and this trapping of fermions on the damped
chain slows down the rate of convergence significantly. This is the main
problem of the real-space approach.

In order to compensate for this trapping of fermions we turn on the
damping in steps and perform scaling sweeps. That is, we first perform a
full DMRG calculation including finite size sweeps on the undamped system,
and then turn on the damping in a series of steps. For each step we perform
a number of finite size DMRG sweeps, thus allowing the DMRG to gradually
optimize the basis for the damped system.

The scaling sweeps make the overall method more stable for moderate
and strong damping since it prevents the system from getting trapped in
local minima due to the damping. However it is numerically costly as we end
up performing many additional DMRG sweeps compared to the undamped
system. Even when using the scaling sweeps there is an upper limit to the
energy resolution attainable as the calculational time increases significantly
when increasing the damping, and batch queue limitations usually sets an
upper limit on the calculational time available. For very strong damping
the convergence rate is so slow that the system effectively becomes trapped,
and the calculation never converges.

Energy resolution

The advantage of the real-space setup is that the standard DMRG algo-
rithms are fairly directly applicable. However there are still a number of
challenges in making the real-space setup produce meaningful results. The
finite size effects are significant and must be reduced by the means described
above. However in practice there is a limit to how far this scheme can be
pushed in terms of finite size splitting – and hence energy resolution. In
principle the resolution of the real-space setup is determined by the scaling
of the boundaries, but in practice the calculational time and stability of the
calculation imposes a limit.

The limitations of the real-space approach is essentially a limitation of
the magnitude of η. In the evaluation of the Kubo formula for conductance
the limited resolution manifests itself as an on-resonance conductance below
the unitary limit due to the broadening introduced by η. Furthermore the
evaluation of the two different correlators for the conductance start to differ
significantly. As these expressions deal with the same physical quantity, this
is a consequence of the different finite size scaling of these two calculations.

Also it should be mentioned that using leads that are not half filled
is in principle possible but cumbersome as it is not obvious what the cor-
responding real-space representation is, and one would have to perform a
tri-diagonalization procedure to produce a tight-binding representation.
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Nevertheless the DMRG setup using a real-space representation of the
leads can yield interesting results, and in Chap. 3.1 we show examples of
correlated physics calculated using this setup.

2.3.4 Momentum-space leads

In many aspects the real-space approach is not optimal in a transport setup
where one wants to model continuous leads and capture physics at very
low-energy-scales. A more natural setup is to use a momentum-space repre-
sentation for the leads, which additionally gives the flexibility to choose the
discretization appropriately for the calculation at hand. However DMRG
is generally known to perform poorly in momentum-space [63] and for long
range hopping and interactions [14], including the so-called ‘star’ configura-
tions where a single site couples to many sites as is relevant when joining a
real-space site to the momentum-space lead.

One of the reasons for the generally poor performance of DMRG in mo-
mentum space is the non-locality of hopping and interaction terms, making
the structure similar to higher dimensional systems in real-space. Another
complication is that operators that are local in real-space become non-local
in momentum-space. Thus in the NRG++ implementation e.g. the current
operator is kept in real-space in order not to complicate the implementation
unnecessarily. To ensure this and to provide a handle to cover also local
(high-energy) physics close to the nanostructure, a portion of the leads con-
sisting of MAdd sites is kept in real-space. The setup is illustrated in Fig. 2.6,
where each lead consists of a real-space part joined with a momentum-space
part.

Contrary to the naive expectation the momentum-space representation
for the lead implemented in NRG++ works very well, and provides a very
flexible description of the leads, such that the discretization can be fine-
tuned to the problem at hand. In Chap. 3.1.3 we compare results using the
real- and momentum-space representations of the leads, demonstrating the
higher accuracy in the latter setup.

Momentum transformation

To transfer the leads to momentum-space we first take the continuum limit
of an infinitely long lead,

−t
n1−1∑

i=1

(c†i ci−1 + h.c.) → −t
∞∑

i=−∞

(c†i ci−1 + h.c.). (2.7)

Later we show that the lead decouples into odd and even combinations of
the left and right movers thus compensating for taking an infinite rather
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Figure 2.6: Momentum-space DMRG setup: The interacting nanostructure is cou-
pled to non-interacting leads via hopping matrix elements t′ = tL/R. The hopping
matrix elements and interaction inside the nanostructure is given by tD and V re-
spectively, and the leaking of interaction into the contacts is governed by γ. The
leads are modeled by MAdd sites kept in real-space, close to the nanostructure,
and then coupled to momentum-space leads via discretization dependent hopping
matrix elements tk, such that the real-space site couples to all momentum-space
sites. There is full flexibility to choose the discretization scheme appropriate for
the calculation, and the direct coupling to the low-energy sector prevents problems
with trapping of fermions in the low-energy sector. A non-linear discretization of
the momentum-space is indicated, and we use the indices 1 and ME for the first
and last sites in the real-space part of the setup.

than semi-infinite lead. Fourier transforming this expression yields

−t
∞∑

i=−∞

(c†i ci−1 + h.c.) →
∫ π

−π
dk εkc

†
kck =

∫ π

0
dk εkc

†
kck, (2.8)

where εk for the tight-binding chain is the cosine dispersion relation. Gen-
eralizing Eq. (2.8) to arbitrary dispersion relations, assuming symmetry of
the band, this is the continuum form which should be rediscretized in order
to put it on a lattice.

When rediscretizing it is essential to be able to target both the low- and
high-energy parts of the band. Further it should be kept in mind that a
highly non-linear discretization scheme is the aim in this context.

Rediscretization: Preserving statistics

In order for the discretization of the momentum lead to be physically mean-
ingful, and hence relevant in this connection, the statistics of the particles
must be preserved. Hence starting from a fermionic operator statistics in
the continuous momentum-space the statistics of the discretized momentum-
space operators should remain fermionic.
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Defining the discretization as

ckl
=

1√
dl

∫ k+
l

k−

l

dk ck

≡
√

dlckl
, (2.9)

where dl = k+
l −k−l is the width of the l’th interval of the discretized k-space

and k−l < kl < k+
l , we find

{

ckl
, c†kl′

}

=
1√
dldl′

∫ k+
l

k−

l

∫ k+
l′

k−

l′

dk dk′
{

ck, c
†
k′

}

=
1√
dldl′

∫ k+
l

k−

l

∫ k+
l′

k−

l′

dk dk′ δ(k, k′). (2.10)

Now observing that k = k′ implies that l = l′ we finally have

{

ckl
, c†kl′

}

=

{
1
dl

∫ k+
l

k−

l

dk, l = l′,

0, l 6= l′.

=

{
1, l = l′,
0, l 6= l′.

(2.11)

Hence, according to Eq. (2.11), weighting each discretized k-operator with
wl =

√
dl as in Eq. (2.9) we have a discretization that preserves the an-

ticommutation rules of the fermions. Notice that as a highly non-linear
discretization scheme is the main goal of the momentum-space leads it is
important to calculate the weighting factors for each discrete momentum-
space operator.

Right and left movers

The momentum transformation also implies a change in the hopping matrix
elements between the real- and momentum-space parts. Denoting temporar-
ily the operator for the last site in the real-space by d, and the first site in
the real-space lead that we wish to transform into momentum-space by c0
we find

td†c0 → td†
1√
2π

∫ k0

−k0

dk ck

=
td†√
2π

∫ k0

0
dk (ck + c−k)

≡ td†√
π

∫ k0

0
dk ck,+, (2.12)
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where new particles have been defined by even and odd combinations of the
left and right movers as

ck,± =
1√
2
(ck ± c−k). (2.13)

Hence using the discretization weight of the momentum-space operators in
Eq. (2.9), w =

√
dk, the coupling of the real- and momentum-space parts of

the leads is via hopping elements

tk = t

√

dk

π
, (2.14)

where t is the real-space hopping parameter, and it should be recalled that
the discretization can be non-linear and hence the hopping is k-dependent
due to the varying interval size.

The rationale for defining these new particles, ck,±, is a reduction of the
effective Hilbert space. As shown in Eq. (2.12) the kinetic part of the real-
space Hamiltonian couples only to the even sector of the momentum-space
leads, represented by the ck,+ operators. Assuming symmetry of the band
we find

∫ k0

−k0

dk εkc
†
kck =

∫ 0

−k0

dk εkc
†
kck +

∫ k0

0
dk εkc

†
kck

=

∫ k0

0
dk (εkc

†
kck + ε−kc

†
−kc−k)

=

∫ k0

0
dk εk(c

†
kck + c†−kc−k). (2.15)

In terms of the new particles we find

c†kck + c†−kc−k =
1

2
(c†k,+ + c†k,−)(ck,+ + ck,−) +

1

2
(c†k,+ − c†k,−)(ck,+ − ck,−)

= c†k,+ck,+ + c†k,−ck,−, (2.16)

which shows that the Hamiltonian contains both subspaces but does not
mix them. In Eq. (2.12) it was shown that the hopping Hamiltonian only
couples to the even sector. Thus the Hilbert space of the odd sector of
the leads decouples from the remaining Hilbert space, and can hence be
neglected completely, enabling a significant reduction of the lead size and
hence a faster setup.

Energy resolution

The main problem of the real-space setup is the gradual decoupling of real-
space sites when using the damped boundary conditions, leading to trapping
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of fermions on the Wilson chains. In the momentum-space setup no scaling
sweeps are necessary as the real-space part of the setup couples directly to
all energy sectors in the momentum-space leads. A direct consequence of
this is that a much smaller finite size level splitting can be used, such that
much lower energy-scales can be addressed in the leads. In turn this leads
to a significantly increased energy resolution, or for fixed energy resolution
a faster setup.

The momentum-space method can hence resolve resonances that are in-
accessible to the real-space setup, or be used for significantly faster calcu-
lations of broader resonances. The flexibility regarding the choice of band
structure in principle enables a higher-dimensional description of the leads,
limited however to single channel physics. So far we have not investigated
this point further.

Finally the flexibility in the choice of discretization makes more sophisti-
cated discretization schemes possible. In Chap. 2.5.2 we discuss an example
of a double-dense discretization scheme, with two fine-grained points in the
band.

2.3.5 Single lead mapping – proportional coupling

In the case of proportional coupling and linear response source-drain bias,
the two leads can be combined in even and odd combinations that are not
mixed by the Hamiltonian of the leads. We show in this section that the
hopping Hamiltonian couples only to the even combination of the leads, such
that a single lead suffices.

The coupling matrices Γi,j = 2[tit
∗
j ] are matrices in the indices of the

transport region, and model the broadening of the levels by the coupling to
the leads. The simplest case of proportional coupling is when the transport
region is a single site, since then the coupling matrices Γi,j = 2tit

∗
j reduce to

real numbers that are always proportional, rather than (in general) complex
matrices. Specializing to this case, MS = 1, and denoting temporarily the
left and right lead operators by a and b respectively we have the Hamiltonian,

Ha =
∑

a

εaa
†a, (2.17a)

Hb =
∑

b

εbb
†b, (2.17b)

HC = −ta(a†d + d†a) − tb(b
†d + d†b). (2.17c)

Defining the rotation to new particles as

(
c+
c−

)

=
1

√

t2a + t2b

(
ta tb
tb −ta

)(
a
b

)

, (2.18)
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the reverse transformation is
(
a
b

)

=
1

√

t2a + t2b

(
ta tb
tb −ta

)(
c+
c−

)

. (2.19)

Defining additionally the proportionality factor as

λ =
t2a
t2b
, (2.20)

the reverse transformation is

(
a
b

)

=





√
λ

1+λ

√
1

1+λ
√

1
1+λ −

√
λ

1+λ





(
c+
c−

)

. (2.21)

Denoting the prefactors as α =
√

λ
1+λ and β =

√
1

1+λ respectively the lead

Hamiltonian transforms as

Ha +Hb =
∑

a

εa(αc
†
+ + βc†−)(αc+ + βc−)

+
∑

b

εb(βc
†
+ − αc†−)(βc+ − αc−)

=
∑

a,b

ε(c†+c+ + c†−c−) (2.22)

where it has been assumed that the leads are identical, ε = εa = εb, and it
was used that α2 + β2 = 1. Notice that in finite voltage calculations this
single lead mapping is no longer valid since the chemical potentials of the
leads are different in this case.

Similarly the combination that enters the contact Hamiltonian
Eq. (2.17c) transforms as

taa
† + tbb

† = ta

√

λ

1 + λ
c†+ + ta

√

1

1 + λ
c†− + tb

√

1

1 + λ
c†+ − tb

√

λ

1 + λ
c†−

=
(
ta

√

λ

1 + λ
+ tb

√

1

1 + λ

)
c†+, (2.23)

where t2bλ = t2a was used to show that the c− part vanishes.
From Eqs. (2.23) and the corresponding hermitian conjugate it is obvious

that only the even combination, c+, couples to the d-level. Thus the odd
combination, c−, can be neglected as it does not couple to the level and the
lead Hamiltonians do not mix odd and even combinations, and we are left
with an effective single lead description.

The two lead model with proportional coupling in the matrix sense can
also be mapped onto a single lead model using a generalized version of the
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single level case illustrated above. In this thesis, however, the single level
suffices, and the modification of the hopping matrix element is

ta,b → ta

√

λ

1 + λ
+ tb

√

1

1 + λ
, (2.24)

or in the case of identical coupling ta = tb = t simply,

ta,b →
√

2 t, (2.25)

This mapping effectively reduces the size of the leads by a factor of
two – and hence provides much faster DMRG calculations. However the
proportional coupling in the matrix sense, ΓL = λΓR, is a strong limitation
to which models can be considered.

It should be mentioned that the Kubo formula for conductance,
Eqs. (2.41) and (2.42), relies on representing a current operator. Putting
this current operator on the link between the lead and the nanostructure it
couples to both combinations of the leads. Therefore to evaluate the Kubo
formula within a single lead setup an additional requirement is to keep the
current operators within the nanostructure itself.

For the resonant chains considered in Chap. 3 the single lead mapping
is invalid since the Γ-matrices are not proportional for this model. For the
single resonant level, where the Γ-matrices reduce to numbers, the current
operator cannot be placed inside the transport region, again invalidating the
single lead mapping for the Kubo setup. For the ferromagnetic Anderson
model with an applied magnetic field, considered in Chap. 4, we evaluate
the conductance via the Meir-Wingreen formula, and hence do not rely on
current operators, and the single lead mapping is indeed used for this model.

2.4 Linear response theory

The theory of systems in equilibrium has undergone an extensive develop-
ment since the formulation of quantum mechanics. A wide range of results
and methods have emerged and in general equilibrium techniques are well
established.

By contrast, non-equilibrium transport in strongly correlated systems is
far from well understood. A variety of methods have been applied with vari-
ous success and the validity and consistency is in general not well established.
Examples of well established methods include the non-equilibrium Greens
function technique [27] and the Landauer-Büttiker approach [38, 28, 27],
while examples of more recent developments are scattering Bethe-ansatz
[64, 65], flow equation methods [31], and time evolution using DMRG
[23, 24, 25].

Linear response theory is a useful method to approach the regime of non-
equilibrium in a controlled way and using the well known set of techniques
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from equilibrium quantum mechanics. In linear response properties are ex-
pressed to lowest order in some perturbation, such that physical observables
are expressed in terms of averages for the unperturbed system.

In principle linear response theory facilitates an approximation-free the-
ory in the sense that no further approximations than the linear response are
needed. The quantity in which the linear response is taken can be chosen
to suit the problem at hand. In this work we evaluate the linear response of
the current in applied source-drain voltage using the DMRG method. The
DMRG is capable of handling strong interactions between particles, such
that the unperturbed Hamiltonian contains the full quantum description.
The calculational scheme presented here is a true transport calculation in
the sense that we do not rely on extracting transport properties from the
ground state itself: The excitations necessary for the transport are generated
by η.

In this part of the chapter we review the linear response result for con-
ductance that much of the work presented in this thesis is revolving around.
First the general Kubo formula is derived following Ref. [28], and the spe-
cific example of the conductance is discussed. Finally some aspects of the
discretization within the DMRG framework are discussed.

2.4.1 General Kubo formula

The starting point of the derivation is a system in equilibrium described
by the Hamiltonian H = H0, and the corresponding density matrix ρ0 =
e−βH0 . For systems in equilibrium quantum mechanical expectation values
are computed as

〈O〉 =
1

Z0
Tr [ρ0O]

=
1

Z0

∑

n

〈n| O |n〉 e−βEn , (2.26)

where

ρ0 = e−βH0 =
∑

n

|n〉 〈n| e−βEn , (2.27)

is the density matrix, Z0 = Tr [ρ0] is the partition function, and |n〉 is a
complete set of eigenstates for the Hamiltonian H0.

Turning on a general but weak time dependent perturbation δH(t) at
time t0, the Hamiltonian is

H(t) = H0 + δH(t)θ(t− t0), (2.28)

and the time evolution of the system for times t > t0 is governed by the
full Hamiltonian H(t). Note that no assumptions are made regarding the
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structure of the unperturbed Hamiltonian H0, which hence may include
correlations and other complications.

Since the perturbation is weak the distribution of states remains un-
changed when the perturbation is applied but the states evolve according
to the full Hamiltonian. The time evolution of the eigenstates, |n(t)〉, and
hence of the density matrix ρ(t), is governed by the Schrödinger equation
using the full Hamiltonian and we have

〈O(t)〉 =
1

Z0

∑

n

〈n(t)| O |n(t)〉 e−βEn . (2.29)

Since we focus on a weak perturbation the interaction picture is well suited
and the time-evolution operator is

Û(t, t0) = Tt

(

e
−i

R t
t0

dt′δĤ(t′)
)

, (2.30)

where Ô is used to denote the interaction picture representation of the op-
erator O, and Tt is the time ordering operator. An expansion of the time-
evolution operator to linear order in the perturbing Hamiltonian δH yields

|n(t)〉 = e−iH0t |n̂(t)〉
= e−iH0tÛ(t, t0) |n̂(t0)〉

≃ e−iH0t

(

1 − i

∫ t

t0

dt′δĤ(t′)

)

|n̂(t0)〉 , (2.31)

where |n̂(t)〉 denotes the interaction picture states, and |n̂(t0)〉 = |n〉 is the
distribution due to the unperturbed Hamiltonian H0. With this expression
and keeping only terms up to linear order in the perturbing Hamiltonian
δH the physical observable evolves as,

〈O(t)〉 = 〈O〉0 − i

∫ t

t0

dt′
1

Z0

∑

n

e−βEn 〈n| Ô(t)δĤ(t′) − δĤ(t′)Ô(t) |n〉

= 〈O〉0 − i

∫ t

t0

dt′
〈[

Ô(t), δĤ(t′)
]〉

0
, (2.32)

or in terms of the change due to the perturbation δ 〈O(t)〉 = 〈O(t)〉 − 〈O〉0

δ 〈O(t)〉 = −i
∫ t

t0

dt′
〈[

Ô(t), δĤ(t′)
]〉

0
, (2.33)

which is the Kubo formula in the time domain. The notation
〈
. . .

〉

0
denotes

average with respect to the unperturbed Hamiltonian H0.
Here the aim is to study steady state properties rather than transients,

and the perturbation is thus assumed to be switched on in the infinite past,
t0 → −∞, leading to the Kubo formula

δ 〈O(t)〉 = −i
∫ t

−∞
dt′

〈[

Ô(t), δĤ(t′)
]〉

0
. (2.34)
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The strength of the Kubo formula is that it facilitates approximation-free
calculations in the non-equilibrium given by H(t), using the framework of
equilibrium quantum mechanics – i.e., averages given by H0.

In all work presented in this thesis Fourier transformed versions of the
Kubo formula for conductance are used. The general derivation of the fre-
quency resolved Kubo formula is not relevant here, and we refer instead to
App. B where the specific resolvents used in this work are derived in detail.
In the following section we discuss the resolvent formulation of the Kubo
formula for conductance, and refer to App. B for a full derivation.

+
eVSD

2

− eVSD

2

0

Figure 2.7: Illustration of the voltage perturbation applied to the system. The
chemical potentials of the left and right leads are shifted symmetrically down and
up respectively, by half the applied source-drain voltage eVSD

2
.

2.4.2 Conductance

In this section we discuss the resolvent expressions for the linear response
conductance of a given system. The perturbation we apply to the system
and calculate the linear response in, is an infinitesimal source-drain voltage,

δH(t) = −eVSD(t)N, |VSD| → 0, (2.35)

N =
1

2
(NL −NR), (2.36)

where NL/R is the density operator of the left/right lead, such that δH
corresponds to shifting the left and right lead chemical potentials down and
up symmetrically by eVSD

2 , as illustrated in Fig. 2.7.

The conductance is calculated from the linear response in electric current
to the applied voltage perturbation

〈
I(t)

〉
=

〈
I
〉

0
− i

∫ t

−∞
dt′

〈
ψ0

∣
∣[Î(t), δĤ(t′)]

∣
∣ψ0

〉
, (2.37)
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where the particle and electric current operators at the i’th link are

Ji = −i(t∗i c†i−1ci − ti c
†
i ci−1), (2.38)

Ii = −eJi. (2.39)

Note that we derive a linear response result in the source-drain voltage VSD,
and the ‘simple’ Hamiltonian H0 thus contains all interactions and corre-
lations. The advantage of using the DMRG method to evaluate the Kubo
formula is that the DMRG can handle strong correlations, such that the
‘simple’ Hamiltonian H0 contains a full quantum description of the system,
including the full Coulomb interaction.

The DC linear conductance is defined in terms of the zero frequency
component of the Fourier transform of the averaged electric current, as in
Eq. (2.1),

g =

〈
I(VSD, ω)

〉

VSD(ω)

∣
∣
∣
ω→0,VSD→0

. (2.40)

Fourier transforming the linear response result for the current in Eq. (2.37)
and dividing by the source drain voltage leads to two different expressions
for the conductance, in terms of current-current, and current-density corre-
lators. In App. B we derive by repeated use of the Lehmann representation
these two different resolvent forms for the linear response for conductance,
to which the DMRG can be applied.

The first form is in terms of current-current correlators, given by

gJiJj =
e2

h
〈ψ0|Ji

8πη(H0 − E0)
(
(H0 − E0)2 + η2

)2Jj |ψ0〉 , (2.41)

where H0 is the Hamiltonian without the voltage perturbation, E0 is the
ground state energy, η is the finite size broadening parameter discussed
in Chap. 2.3.1, and Jℓ is the current operator on the ℓ’th link as defined in
Eq. (2.38). In principle the current operators can be positioned arbitrarily in
the real-space part of the setup, but in general the best results are obtained
close to the nanostructure. Note that the two current operators can be
placed at the same link.

The second resolvent form is in terms of current-density correlators, given
by

gJiN = −e
2

h
〈ψ0|Ji

4πiη

(H0 − E0)2 + η2
N |ψ0〉 , (2.42)

where H0, E0, η, and Jℓ have the same meanings as above, and where N is
the density operator given in Eq. (2.36). Again the current operator can be
placed anywhere in the real-space part of the system.
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As discussed in Chap. 2.3.1, there may be deviations between the two
different resolvents, (2.41) and (2.42), even though they measure the same
physical quantity. Also the position of the current operators can have an im-
pact on the resulting conductance, and as commented above the best results
are usually found putting the current operators close to the nanostructure.
The different calculations should be compared and if there are substantial
deviations it is a sign that finite size effects are significant, and a better
resolution should be attempted.

In order to calculate the current-current and current-density correlators
in Eqs. (2.41) and (2.42) within the DMRG setup we target the ground
state

∣
∣ψ0

〉
, the operator states N

∣
∣ψ0

〉
and Jℓ

∣
∣ψ0

〉
, and the correction vectors

∣
∣φℓ

〉
=

[
H0 − E0 + iη

]−1
Jℓ

∣
∣ψ0

〉
.

Denoting the real and imaginary parts of the correction vectors by
∣
∣φR

ℓ

〉

and
∣
∣φI

ℓ

〉
respectively such that

∣
∣φℓ

〉
=

∣
∣φR

ℓ

〉
+ i

∣
∣φI

ℓ

〉
, the current-current and

current-density correlators can be calculated from the target states as

gJiJj = −8πe2

h

〈
φI

j

∣
∣φR

i

〉
, (2.43)

gJiN =
4πe2

h

〈
φR

i

∣
∣N

∣
∣ψ0

〉
, (2.44)

where it was used that in the NRG++ implementation used in this work the
creation and annihilation operators are real, making the density state N

∣
∣ψ0

〉

real and the current operator state Jℓ

∣
∣ψ0

〉
imaginary, as also discussed in

App. D.

2.4.3 Discretization details

When doing calculations like linear transport on finite systems the discretiza-
tion of the lead is crucial for the accuracy of the results. The transport takes
place close to the Fermi level and the discretization scheme should support
this. However it has turned out to be important to represent also the higher
energy states in the band, although the discretization needed there is less
fine-grained.

We work with two different bands, the linear band, εk = 2k for −D/2 <
k < D/2, and the cosine-band εk = −D cos k for 0 < k < π, where D is a
band cutoff such that the band ranges in energies −D < εk < D. A central
parameter when one defines the band is what we denote the Fermi velocity,
defined as the slope of the dispersion at the Fermi edge, vF = ∂kεk

∣
∣
k=kF

.
For the linear band the slope is kept fixed, while the slope of the cosine-band
as defined above is scaled by the bandwidth. Notice that we have shifted
the linear band such that the Fermi edge is at zero energy and kF = 0.

For the conductance calculations using the momentum-space representa-
tion of the leads the discretization scheme used is inspired by the logarithmic
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discretization used in NRG and can be summarized as follows: (1) ML0 loga-
rithmically discretized points dense around εF , given by the scaling factor Λ,
(2) ML1 linearly discretized points at the low-energy scale close to and sym-
metrically around εF , and (3) additional MAdd real-space sites added around
the nanostructure to account for local (high-energy) physics. Thus in sum-
mary we have ME = MS +MAdd real-space sites, and ML = ML0 + 2ML1

momentum-space sites in each lead.

The calculations presented in this thesis all deal with Fermi surface
physics and the above discretization scheme suffices. It is essential to have
the linear discretization on the low-energy scale in order to get the unitary
conductance on-resonance. Note that exactly the linear discretization is be-
yond the capability of the NRG, where only the logarithmic discretization
is possible.

For more complicated problems involving resolvents at energies away
from the Fermi edge more sophisticated discretization schemes are needed.
An example of this, discussed in more detail in Chap. 2.5.2, is the finite
frequency spectral function, where energies at the Fermi edge and energies
corresponding to the frequency must be resolved properly, which is again
beyond the NRG type discretizations.

2.5 Single particle Greens functions

In this section we show how the single particle Greens functions can be
evaluated within the DMRG framework. In order to apply the DMRG setup
the Greens functions must be rephrased in terms of resolvent equations. It
turns out that the lesser and greater Greens functions are formulated in
terms of the same resolvents as the retarded Greens function, and hence a
DMRG evaluation of those resolvents provides access to all Greens functions
for a given set of parameters.

Formally the Kubo formula is similar to the single particle propagator,
only a single annihilation or creation operator plays the role previously held
by the current operators. One technical difference is that the creation and
annihilation operators do not preserve the number of particles and hence
the Hamiltonian in the resolvent sees a different target space compared to
the conductance calculations.

Here we describe in some detail the resolvent formulation of the Greens
functions, and discuss particular issues in the DMRG evaluation of those.
Further we review the evaluation of the conductance from the spectral func-
tion, and discuss the limitations implicit in this approach to calculate the
conductance.
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2.5.1 Resolvent formulation

In order to formulate resolvent equations for the single particle Greens func-
tions we Fourier transform and introduce the usual broadening parameter η
needed in any finite system physics to broaden the δ-peaks. The fermionic
Greens functions are defined by

G>
i,j(t, t

′) = −i
〈
ci (t)c

†
j(t

′)
〉
, (2.45a)

G<
i,j(t, t

′) = i
〈
c†j(t

′)ci (t)
〉
, (2.45b)

Gr
i,j(t, t

′) = −iθ(t− t′)
〈{
ci (t), c

†
j(t

′)
}〉
, (2.45c)

Ga
i,j(t, t

′) = iθ(t′ − t)
〈{
ci (t), c

†
j(t

′)
}〉
, (2.45d)

where we use i and j to denote the position in the lattice, possible spin
indices have been suppressed, and where {A,B} = AB + BA denotes the
anticommutator of operators A and B. In the zero temperature limit con-
sidered here the average reduces to a ground state average.

We consider first the single particle propagator, or retarded Greens func-
tion, and rewrite it in a single exponential,

Gr
i,j(t, t

′) = −iθ(t− t′)
(〈
ψ0

∣
∣eiH0tcie

−iH0teiH0t′c†je
−iH0t′

∣
∣ψ0

〉

+
〈
ψ0

∣
∣eiH0t′c†je

−iH0t′eiH0tcie
−iH0t

∣
∣ψ0

〉)

= −iθ(t− t′)
(〈
ψ0

∣
∣cie

i(E0−H0)(t−t′)c†j
∣
∣ψ0

〉

+
〈
ψ0

∣
∣c†je

−i(E0−H0)(t−t′)ci
∣
∣ψ0

〉)

, (2.46)

where it is explicit that the Greens function depends only on a single time
argument. Hence the Fourier transform is

Gr
i,j(ω) = −i

∫ ∞

0
dt

(〈
ψ0

∣
∣cie

i(E0−H0)tc†j
∣
∣ψ0

〉

+
〈
ψ0

∣
∣c†je

−i(E0−H0)tci
∣
∣ψ0

〉)

ei(ω+iη)t

=
〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉

−
〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
, (2.47)

where the broadening, or convergence, parameter η has been introduced.
This is the desired resolvent form of the retarded Greens function Gr to
which the DMRG can be applied. The advanced Greens function can be
calculated from the retarded as Ga = [Gr]†, and hence needs no further
consideration.
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Similar manipulations apply for the greater Greens function,

G>
i,j(t, t

′) = −i
〈
ψ0

∣
∣eiH0tcie

−iH0teiH0t′c†je
−iH0t′

∣
∣ψ0

〉

= −i
〈
ψ0

∣
∣cie

−i(H0−E0)(t−t′)c†j
∣
∣ψ0

〉
, (2.48)

such that

G>
i,j(ω) = −i

∫ ∞

−∞
dt

〈
ψ0

∣
∣cie

−i(H0−E0)tc†j
∣
∣ψ0

〉
eiωt

= −2πi
〈
ψ0

∣
∣ciδ(ω +E0 −H0)c

†
j

∣
∣ψ0

〉

= −2i
〈
ψ0

∣
∣ci

η

(ω +E0 −H0)2 + η2
c†j

∣
∣ψ0

〉

= −2i Im

[
〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
]

, (2.49)

where the δ-function has been represented as an area normalized Lorentzian
of width η in order to broaden the δ-function due to the finite size of the
system. Note in particular that this resolvent is the same as for the retarded
Greens function Eq. (2.47).

Similarly the lesser Greens function is,

G<
i,j(t, t

′) = i
〈
ψ0

∣
∣eiH0t′c†je

−iH0t′eiH0tcie
−iH0t

∣
∣ψ0

〉
, (2.50)

which gives the resolvent form

G<
i,j(ω) = −2i Im

[
〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉
]

. (2.51)

Note again that this is the same resolvent as for the retarded Greens function
Eq. (2.47). Thus if these two resolvents,

〈
ψ0

∣
∣c†j

1

H0 −E0 + ω + iη
ci

∣
∣ψ0

〉
, (2.52a)

〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
, (2.52b)

are calculated using DMRG information on all four Greens functions is
available from the resolvents. Note however that individual calculations are
necessary for each frequency ω.

In the DMRG calculations of the propagators we target the ground state
∣
∣ψ0

〉
, the operator states c†j

∣
∣ψ0

〉
and ci

∣
∣ψ0

〉
, and the real and imaginary

parts of the correction vectors
∣
∣φi

〉
=

[
H0 − E0 + ω + iη

]−1
ci

∣
∣ψ0

〉
and

∣
∣φj

〉
=

[
H0−E0−ω− iη

]−1
c†j

∣
∣ψ0

〉
, from which the resolvents are calculated
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as

〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉
=

〈
ψ0

∣
∣c†jRe

[∣
∣φi

〉]
+ i

〈
ψ0

∣
∣c†jIm

[∣
∣φi

〉]
, (2.53a)

〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
=

〈
ψ0

∣
∣ciRe

[∣
∣φj

〉]
+ i

〈
ψ0

∣
∣ciIm

[∣
∣φj

〉]
. (2.53b)

2.5.2 Discretization details

In the evaluation of the spectral function the fine-grained discretization
around the Fermi energy alone no longer suffices. The fine-grained dis-
cretization around εF is still needed to get an accurate ground state, but
the resolvents in Eqs. (2.52) target energies at E0 ± ω, such that a fine-
grained discretization is necessary at those energies as well.

In the real-space DMRG setup it is quite cumbersome but in principle
possible to use such a ‘double dense’ discretization, while in the standard
NRG [66] it is not possible as the NRG relies on a clear separation of energy-
scales due to the state selection by energy. Using the momentum-space
leads in the DMRG setup the discretization can easily be tailored to suit
the problem at hand.

To provide the flexibility of having a fine-grained discretization around
multiple points a different approach than used for the Kubo setup to the
discretization has been implemented. The general idea is to use a level dis-
tribution function, L(k), rather than constructing the discretization directly.
Using the linear band as an example, and given some function L(k) on the
momentum interval k ∈ [−D

2 ,
D
2 ] the N points in the discretization are de-

termined by dividing the axis into N+1 intervals of constant area below the
curve. An example is given in Fig. 2.8 where a doubly dense distribution
function is illustrated together with the resulting discretization.

Hence using a constant distribution function, L(k) = C, gives a linear
discretization, while using a doubly peaked distribution gives a discretization
that is dense around two different points. Further, the actual lineshape of
each peak determines the details of the dense distribution, such that using
a lineshape that is essentially constant in a range close to the peak would
mimic a linear discretization on the energy scale close to the condensation
point.

For the single particle Greens function calculations we use a doubly
peaked level distribution function for each term in Gr. Without specify-
ing the line shape of the peaks the doubly dense level distribution function
can be represented as

L(k) = α0C + α1L1(k, k1, w1) + α2L2(k, k2, w2), (2.54)
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Figure 2.8: Example of a double dense level distribution function for discretizing
the leads in the case of a linear band. L(k) is dense around kF = 0 and k = 0.5 (in
units of D

2
) relevant for describing eg. one term in the spectral function at frequency

ω = 1.

where Lℓ(k, kℓ, wℓ) means some peaked function centered at k = kℓ and
with the parameter w = wℓ controlling the width. Adjusting the widths wℓ,
positions kℓ, and weights αℓ hence provides control over the discretization
scheme. In order to compare different choices of discretization it is usually
required additionally that

∑

ℓ αℓ = 1. The specific details of the peaked
functions Lℓ depend on the problem at hand.

2.5.3 Spectral function

The spectral function is defined from the retarded Greens function as the
imaginary part of Gr, such that the frequency dependent spectral function,
A(ω), can be expressed as

Ai,j(ω) = −2Im
[
Gr

i,j(ω)
]

= −2
(

Im
[〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉]

−Im
[〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉])

, (2.55)

where typically only the diagonal components are considered.

For a number of models access to the spectral function is an interesting
quantity in itself as it for example provides information on the lifetime of
quasi-particle excitations.
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In connection with transport it also contains information. For a cer-
tain class of models, those who have proportional coupling matrices to the
left and right leads, the conductance can be evaluated from the spectral
function via the Meir-Wingreen formula [29, 67]. We review this procedure
in Chap. 2.5.4, and use it explicitly for the ferromagnetic Anderson model
with an applied magnetic field in Chap. 4.1. The motivation for using this
approach rather than the direct evaluation of the Kubo formula is a differ-
ent finite size scaling; for some models the spectral function scales better
with the lead size than the Kubo formula, and further for the proportional
coupling models it can be evaluated within a single lead setup (see also
Chap. 2.3.5), and hence this approach may enable faster or more accurate
calculations.

2.5.4 Conductance from the spectral function

In this section we review how to calculate the conductance in linear response
using the retarded single particle Green function, following Haug and Jauho
[27]. Such an approach is relevant since the calculation of the propagator
has a better finite size scaling and for some models does not require a two
terminal setup, but rather a single lead suffices in the linear source-drain
voltage limit. However the derivation given here takes its starting point in a
standard two lead setup – as the single lead mapping is merely a calculational
trick to get the propagator numerically easier.

The current out of the left and right contacts is given by the time deriva-
tive of the occupation number operator for the contacts,

IL/R = −e
〈
ṄL/R

〉
= − ie

~

〈
[H0, NL/R]

〉
, (2.56)

where H0 is the full Hamiltonian and Nℓ is the occupation number oper-
ator for the relevant lead. Calculating this commutator it can be shown
that the current can be expressed in terms of the equal time lesser hybrid
Greens function D<

d1cn1
(t, t) = i

〈
c†n1(t)d1(t)

〉
. By calculating the equations

of motion for the corresponding time ordered Greens function Dt
d1cn1

, and

extracting the lesser component the current through the left and right con-
tact can be expressed in terms of the Greens functions and coupling matrices
of the transport region as,

IL/R =
ie

~

∫
dω

2π

Tr
[

ΓL/RG<(ω) + n
L/R
F (ω)ΓL/R

[
Gr(ω) − Ga(ω)

]]

, (2.57)

where nα
F is the Fermi function of lead α, and the boldface notation indi-

cates that the Greens functions and Γ’s are matrices in the transport region
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indices,

G = [Gi,j], (2.58)

Γ = [2ti t
∗
j ], (2.59)

and where the time dependent fermionic Greens functions where defined in
Eq. (2.45).

A few remarks are in order regarding the current expression in Eq. (2.57).
First of all it is valid for arbitrary interactions within the transport region,
and secondly it is valid for any applied bias. The complication arises when
trying to calculate the Greens functions, where approximations are often
made in order to get closed form expressions when using analytical tools.
The retarded and advanced Greens functions fulfill Dyson equations,

Gr/a = G
r/a
0 + G

r/a
0 Σr/a Gr/a, (2.60)

whereas the lesser Greens function obeys the Keldysh equation which, ne-
glecting a boundary term describing transient behavior, reads

G< = Gr Σ< Ga. (2.61)

Thus this formalism relies on the definition of self-energies Σ that capture
the physics of the model, and the solution of this coupled set of matrix
equations.

The current was defined as the current out of each contact. In steady
state, which is the target here, the current through the two contact links are
thus equal apart from an opposite sign, and hence we can ‘symmetrize’ the
current using IL = −IR and

I = xIL − (1 − x)IR, (2.62)

where x ∈ [0, 1] can be chosen arbitrarily. Thus the current becomes

I =
ie

~

∫
dω

2π
Tr

[[
xΓL − (1 − x)ΓR

]
G<(ω)

+
[
xnL

F (ω)ΓL − (1 − x)nR
F (ω)ΓR

][
Gr(ω) − Ga(ω)

]]

. (2.63)

Out of equilibrium the fluctuation-dissipation theorem no longer applies, and
the lesser Greens function must be calculated separately. However specializ-
ing to the case of proportional coupling, ΓL = λΓR, a simpler expression for
the current can be given. Note that proportional coupling is a quite severe
restriction since ΓL/R are matrices. With this restriction we find the current

I =
ie

~

∫
dω

2π
Tr

[

ΓR
[
λx− (1 − x)

]
G<(ω)

+ΓR
[
λxnL

F (ω) − (1 − x)nR
F (ω)

][
Gr(ω) − Ga(ω)

]]

. (2.64)
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The troublesome term involving the lesser Greens function can be eliminated
by choosing x as x = 1/(1 + λ), and using further that

λ

1 + λ
=

λΓR

ΓR + λΓR
=

ΓL

ΓR + ΓL
, (2.65)

we find

I =
ie

~

∫
dω

2π

[
nL

F (ω) − nR
F (ω)

]
Tr

[
ΓRΓL

ΓR + ΓL

[
Gr(ω) − Ga(ω)

]
]

. (2.66)

Specializing further to linear response in the source-drain voltage the dif-
ference in Fermi functions reduces to a δ-function, nL

F − nR
F = eVSDδ(ω).

Considering for simplicity the case of a single level in the transport region
such that the Γ-matrices reduce to simple numbers, we finally find the con-
ductance in terms of the zero frequency spectral function,

g =
e2

h

ΓRΓL

ΓR + ΓL
A(ω = 0), (2.67)

where A(ω) = −2 Im [Gr(ω)] is the spectral function of the transport level.
Inserting finally ΓL/R = 2|tL/R|2 we find the Meir-Wingreen formula [38, 27]
for the DC linear response conductance

g =
e2

h

2|tR|2|tL|2
|tR|2 + |tL|2

A(ω = 0), (2.68)

where we have retained separate notations for left and right leads.
Hence the conductance can be calculated from the spectral function for

models with proportional coupling, such that the single lead mapping and
the better finite size scaling of the single particle propagator can be utilized.
For some models this is a more feasible path to calculations as the finite size
scaling for the spectral function is different than for the Kubo formula. For
example this approach is taken for the ferromagnetic Anderson model with
an applied magnetic field considered in Chap. 4.1.

2.6 Benchmarking the DMRG scheme

When developing new methods it is essential to have rigorous and non-
trivial benchmarks to evaluate the accuracy of the methods. In the case
of the DMRG scheme used here there are two different sources of error to
consider: (1) The error made by the DMRG truncation procedure, and (2)
the error due to the use of a finite system to calculate transport properties.
These two different issues are addressed by two different techniques.

The exact diagonalization in the case of free fermions facilitates a bench-
mark for the DMRG truncation since the evaluation is using the same dis-
cretization scheme and hence exhibits the same finite size effects as the
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DMRG setup. It should be noted that the non-interacting case is not a spe-
cial case for the DMRG where it performs significantly better, and therefore
it is a rigorous benchmark to test DMRG against exact diagonalization cal-
culations in this limit. Furthermore the exact diagonalization calculations
are fast such that the determination of the parameters for the discretization
is easy.

The finite system issue can be addressed using Greens function calcula-
tions to evaluate the exact conductance in the non-interacting and infinite
lead limit – hence addressing the finite size error. In total we can thus ad-
dress the significance of both types of errors and provide a complete and
rigorous benchmark for the DMRG method.

In the following sections we review in some detail these two benchmarks
for the DMRG procedure.

2.6.1 Exact diagonalization – non-interacting systems

In this section we demonstrate how the exact diagonalization procedure
can be used to evaluate the same resolvents as we evaluate in the DMRG
scheme. Since the exact diagonalization idea can be used equally well for
spinful and spinless models we give here a unified description of the exact
diagonalization idea as used in this work. Note that spinful models without
spin-flips decompose into ‘spinless’ components that are identical, and hence
these cases reduce to the spinless calculation.

The overall idea is to use the single particle basis which grows linearly
rather than exponentially with the system size. Hence for the system sizes
relevant in the DMRG calculations a full diagonalization is feasible. An
example is a normal nearest-neighbor hopping chain (tight-binding chain)
which would result in a tri-diagonal Hamiltonian of a size that can be diag-
onalized exactly.

With the matrices containing the eigenstates of the Hamiltonian, denoted
U , the basis change to the diagonal basis is

c†ℓ =
∑

k

U∗
ℓ,kc

†
k, (2.69a)

cℓ =
∑

k

Uℓ,kck, (2.69b)

where the operator c†k is in the diagonal basis of the Hamiltonian and ℓ
denotes a position in the original non-diagonal setup. The single particle
energies εk of the states k are known from the diagonalization. It should be
noted that the label k is used as an index and need not represent a physical
momentum.

The exact diagonalization schemes for the Kubo formula for conductance
and for the Greens functions reviewed next are implemented in the NRG++
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DMRG code, and used as a benchmark in the relevant limit. In Chaps. 3
and 4 we present example calculations.

Conductance

To proceed all relevant operators should be rotated to the diagonal basis,
for example

c†
ℓ
cℓ′ =

∑

p,q

U∗
ℓ,pUℓ′,qc

†
pcq, (2.70)

such that the particle current operator transforms as

Ji = −iti(c†i−1ci − c†i ci−1),

= −iti
∑

p,q

(U∗
i−1,pUi,q − U∗

i,pUi−1,q)c
†
pcq. (2.71)

In the diagonal basis the ground state of the Hamiltonian is a simple Fermi
sea,

∣
∣ψ0

〉
=

∏

k<kF

c†k |−〉 , (2.72)

where |−〉 denotes the vacuum state, and hence the linear response conduc-
tance can be evaluated explicitly. As we show in App. A the linear response
conductance can be expressed as

gJiJj =
e2

h
〈ψ0|Ji

8πη(H0 −E0)
(
(H0 − E0)2 + η2

)2Jj |ψ0〉 , (2.73a)

gJiN = −e
2

h
〈ψ0|Ji

4πiη

(H0 −E0)2 + η2
N |ψ0〉 . (2.73b)

To proceed further we first identify the action of the current operator on the
ground state,

Ji

∣
∣ψ0

〉
∝

∑

p,q

(U∗
i−1,pUi,q − U∗

i,pUi−1,q)c
†
pcq

∏

k<kF

c†k |−〉 , (2.74)

such that the state generated is a single particle excitation of the ground
state, exciting a particle from state q inside the Fermi sea to state p above
the Fermi sea. Thus the action of the Hamiltonian on this state is

H0Ji

∣
∣ψ0

〉
∼ (E0 − εq + εp)Ji

∣
∣ψ0

〉
, (2.75)

and any resolvent function of the Hamiltonian, f(H0 − E0), where E0 is
the energy of the Fermi sea, can be evaluated within the current-current
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correlator setup as
〈
ψ0

∣
∣Ji f(H0 −E0)Jj

∣
∣ψ0

〉
=

−titj
∑

p,q

nF (εq) (1 − nF (εp)) f(εp − εq)

(
Ui−1,pU

∗
i,q − Ui,pU

∗
i−1,q

)(
U∗

j−1,pUj,q − U∗
j,pUj−1,q

)
, (2.76)

where the Fermi functions nF assure that particles within the Fermi sea are
excited to vacant states above the Fermi sea. Hence the conductance can
be evaluated once the transformation matrices have been calculated.

Similar considerations apply to the density operator N ,

N
∣
∣ψ0

〉
=

1

2

∑

p,q

(∑

ℓ∈L

U∗
ℓ,pUℓ,q −

∑

ℓ∈R

U∗
ℓ,pUℓ,q

)

c†pcq
∏

k<kF

c†k
∣
∣ −

〉
, (2.77)

such that any resolvent function of the Hamiltonian, f(H0 − E0), may be
evaluated in the current-density correlator as

〈
ψ0

∣
∣Jif(H0 − E0)N

∣
∣ψ0

〉
=

−iti
2

∑

p,q

nF (εq) (1 − nF (εp)) f(εp − εq)

(
Ui−1,pU

∗
i,q − Ui,pU

∗
i−1,q

)( ∑

ℓ∈L

U∗
ℓ,pUℓ,q −

∑

ℓ∈R

U∗
ℓ,pUℓ,q

)

. (2.78)

The expressions Eqs. (2.76) and (2.78) enable an exact diagonalization
evaluation of the current-current and current-density correlators for the con-
ductance.

The single particle propagator

Similar transformations as for the conductance can be used for the single
particle Greens functions. We consider the retarded Greens function in the
resolvent form,

Gr
i,j(ω) =

〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉

−
〈
ψ0

∣
∣ci

1

H0 −E0 − ω − iη
c†j

∣
∣ψ0

〉
, (2.79)

as an evaluation of these resolvents enables evaluation of all the single par-
ticle Greens functions.

Using again the known ground state in the diagonal basis the Hamilto-
nian in the two terms in Eq. (2.79) sees a Fermi sea with an extra particle
or hole. Thus the two terms in Gr can be expressed as

〈
ψ0

∣
∣c†j f(H0 − E0)ci

∣
∣ψ0

〉
=

∑

p

U∗
j,pUi,p f(−εp)nF (εp), (2.80)
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and

〈
ψ0

∣
∣ci f(H0 −E0)c

†
j

∣
∣ψ0

〉
=

∑

q

U∗
j,qUi,q f(εq)(1 − nF (εq)), (2.81)

where the Fermi functions assure that filled states from the Fermi sea are
annihilated or vacant states above the Fermi sea are filled. Thus the retarded
Greens function can be expressed as

Gr
i,j(ω) =

∑

p

U∗
j,pUi,p

nF (εp)

ω − εp + iη
−

∑

q

U∗
j,qUi,q

1 − nF (εq)

−(ω − εq + iη)

=
∑

p

U∗
j,pUi,p

1

ω − εp + iη
. (2.82)

Since the lesser, greater and advanced Greens functions are given in terms
of the same resolvents as the retarded Greens function, the expressions in
Eqs. (2.80) and (2.81) can also be used to evaluate the remaining Greens
functions.

2.6.2 Greens function approach – non-interacting systems

In this section we discuss briefly the Greens function result for one class of
systems considered in this work, namely the spinless resonant chains in the
symmetrically coupled case, t′ = tL = tR. The calculation uses semi-infinite
tight-binding chains as leads. In App. C we show in more detail how the
non-equilibrium Greens function method [27] can be used to evaluate the
conductance of an MS site linear resonant chain, see also Chap. 3.

In summary the DC conductance is given by the expression

g =
I

VSD

=
e2

h
t′2Im [gr

11] ×
{

Im
[
Gr

d0d0

]
(2.83)

+t′2
∣
∣Gr

d0d0

∣
∣2Im [gr

11] t
2
∣
∣gr

11

∣
∣2

[ MS−1
∏

i=1

∣
∣
∣

t2D
ω − µg − ΣRi

∣
∣
∣

2
− 1

]}∣
∣
∣
ω=0

.

where the Greens functions are given by

G
r/a
d0d0

(ω) =
1

ω − µg − Σ
r/a
d0d0

(ω)
, (2.84)

G
r/a
Ri−1

(ω) =
1

ω − µg − Σ
r/a
Ri−1

(ω)
, (2.85)

g
r/a
11 (ω) =

1

ω − Σr/a(ω)
. (2.86)
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The index d0 denotes the first site in the resonant chain and Gd0d0 is the
corresponding diagonal Greens function.

The self-energies of the Greens functions are built starting from the right
side of the chain (‘R’) by iteration in the index Ri as,

Σd0d0(ω) =
t2D

ω − µg − ΣRMS−1
(ω)

, (2.87)

ΣRi(ω) =
t2D

ω − µg − ΣRi−1(ω)
, (2.88)

ΣR1(ω) =
t′2

ω − Σ(ω)
, (2.89)

and where the retarded self-energy of the lead, Σr(ω), is finally given by

Σr(ω) =
ω −

√
ω2 − 4t2

2
, (2.90)

such that the lead self-energy has a finite imaginary part inside the cosine-
band |ω| < 2t.

This enables the calculation of the conductance of a non-interacting res-
onant chain coupled to semi-infinite tight-binding leads for symmetric cou-
pling.1 In App. C the Matlab implementation of the Greens function cal-
culation of the conductance of resonant chains is shown, and we also give
a comparison of the exact diagonalization and Greens function solutions to
a non-interacting resonant 7 site chain weakly coupled to two tight-binding
leads, demonstrating that the two approaches agree perfectly.

In Chaps. 3 and 4 we show explicit examples of the exact diagonaliza-
tion and Greens function approaches to the conductance of non-interacting
systems.

1The symmetric coupling is not strictly a demand – having tL 6= tR would only result
in different self-energies.
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52 Spinless models

In this chapter we present work performed within spinless models. Spin-
less models neglect the complication of the spin degree of freedom of the
electrons and can be used to describe situations where only the charge de-
gree of freedom matters. Usually DMRG performs very well for this class of
models as the spinless site basis is small.

The models are presented in ‘chronological’ order, such that the oldest
work using the real-space leads is presented first, followed by more recent
work using the momentum-space leads. For the different models considered
in this chapter we present calculations of the Kubo formula for conductance
in the DC-limit, discussed in Chap. 2.4.2,

gJiJj =
e2

h
〈ψ0|Ji

8πη(H0 − E0)
(
(H0 − E0)2 + η2

)2Jj |ψ0〉 , (3.1a)

gJiN = −e
2

h
〈ψ0|Ji

4πiη

(H0 − E0)2 + η2
N |ψ0〉 . (3.1b)

The scale on which we measure all other parameters is set by the hopping
matrix element in the tight-binding leads such that t = 1 and everything
else is measured in units of t. The momentum-space representation of the
leads that is used in some calculations is chosen to represent the real-space
lead with hopping matrix element t such that again t = 1 sets the scale.

We first consider a resonant 7 site chain. This chain length was cho-
sen long enough to be an extended system, and short enough to be treated
within the real-space DMRG setup. Due to the odd number of sites a reso-
nance is pinned at zero gate potential by the particle-hole-symmetric inter-
action, such that benchmark calculations for the on-resonance conductance
are possible without having to locate the resonance first. For this model we
investigate the effects on the conductance of having repulsive interactions
mainly inside the nanostructure. We show that strong interactions inside
the chain sharpens the resonances, and that this model displays Coulomb
blockade behavior.

We then proceed with a simpler model, consisting of a single resonant
level interacting with the first sites in each lead via a density-density inter-
action on the contact links. Despite the simplicity of this model it shows an
interesting and unexpected non-monotonic behavior of the resonance width
versus the interaction strength on the contacts.

Finally in order to investigate if the non-monotonic behavior of the single
level model is unique to this simple model we consider short linear chains
consisting of 3 and 5 sites. These models have two interaction strengths,
the interaction inside the system, and the leaking of interaction onto the
contact links. Thus we have two oppositely directed effects for the off-
resonance transport, a suppression due to the interaction within the chain,
and an enhancement due to the leaking interaction on the contacts, and we
show that the enhancement is stronger than the suppression.
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MS, tD, V

Figure 3.1: Interacting resonant chain with MS sites (here MS = 3 shown), coupled
to non-interacting real-space tight-binding leads. The total system size is denoted
M , the number of lead sites is ML. The intradot and intralead hopping elements
are tD and t respectively, while the hopping matrix elements between the chain and
leads are t′ = tL = tR. The interaction V is confined within the resonant chain and
the parameter γ controls the leaking of the interaction onto the contact links. The
sites in the leads that are connected to the resonant chain are denoted n1 − 1 and
n2.

For the resonant 3 site chain we consider additionally the resonance
at finite gate potential, and show that it exhibits a similar, although less
pronounced, behavior compared to the resonance at zero gate potential.

3.1 Interacting resonant 7 site chain

In this section we consider an interacting resonant MS = 7 site chain, cou-
pled to non-interacting leads via weak links. The rationale for studying
this chain length is that the system is large enough to have an interest-
ing structure, and small enough to be treated within the developed DMRG
framework using real-space leads. The advantage of having an odd number
of sites in the chain is that the central resonance is pinned at zero gate
potential by virtue of the particle-hole-symmetric interaction, such that the
discretization of the leads can easily be tested at the resonant value.

Apart from the comparison of the real- and momentum-space setups at
the end of the section all calculations presented for MS = 7 were performed
using the real-space representation of the leads in the DMRG evaluation of
the conductance. We present some level of detail regarding the parameter
determination for the leads as this is crucial for the success of these cal-
culations. The essential results presented in this section were published in
Ref. [60].

The model we consider is an interacting linear chain connected to non-
interacting real-space leads via weak links, denoted tL/R. We denote by S the
system (the resonant chain), and by L/R the left and right lead respectively.
The general setup is shown in Fig. 3.1 and using the notation in the figure
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the Hamiltonian H = HL +HR +HS +HC is

HL,R = −t
∑

i,i−1∈{L,R}

(c†i ci−1 + c†i−1ci ), (3.2a)

HS =
∑

j∈S

µgc
†
jcj −

∑

j,j−1∈S

tD(c†jcj−1 + c†j−1cj)

+
∑

j,j−1∈S

V
(

nj −
1

2

)(
nj−1 −

1

2

)

, (3.2b)

HC = −tL(c†n1−1cn1
+ h.c.) − tR(c†n2−1cn2

+ h.c.) (3.2c)

+γV
((
nn1−1 −

1

2

)(
nn1 −

1

2

)
+

(
nn2−1 −

1

2

)(
nn2 −

1

2

))

,

where V is the particle-hole-symmetric interaction strength, nℓ = c†ℓcℓ is the
local density operator at site ℓ, tD is the hopping matrix element within
the dot, t is the hopping matrix element in the leads, γ controls the leak of
interaction into the contacts, tL/R are the (weak) links connecting leads and
dot, and µg is a gate potential applied to the resonant chain.

We show in this part of the chapter that strong interaction within the
resonant chain suppresses the width of the resonances, and further that we
find a Coulomb blockade renormalization of the resonance position by the
interaction, demonstrating Coulomb blockade from a microscopic model.
But first the free parameters of the model must be determined.

3.1.1 Parameter determination

Before actual numerical calculations can be performed the free parameters of
the real-space setup, the number of damped links MD, the damping factor
d, and the finite size broadening η, must be determined, see Chap. 2.3.3
for definitions. This is done using exact diagonalization calculations for the
non-interacting systems, specifically benchmarking the resonant value of the
conductance at µg = 0. Due to the bath property of the damped boundary
conditions it is safe to assume that half filling is nearly maintained in the
parts of the leads that are close to the chain. By contrast the strongly
damped regions act like particle baths and therefore cannot maintain half
filling for finite gate potential.

The reference result used in the determination of the parameters is the
resonant value pinned at µg = 0 by the particle-hole symmetry. Performing
exact diagonalization calculations of the resonant value of the conductance
and varying the value of η we obtain the plot in Fig. 3.2(a). The plot nicely
illustrates the discussion of the finite size broadening given in Chap. 2.3.1;
for η → 0 no transport takes place, and the conductance is identically zero
in this limit. Turning up the value of η eventually broadens the levels suffi-
ciently to allow transport. A region where the resonant value of the conduc-
tance does not depend sensitively on the actual choice of η is found, as seen
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Figure 3.2: Example of an exact diagonalization calculation of the resonant value
of the conductance gres versus the finite size broadening η, (a) on a logarithmic
scale, (b) on a linear scale of the physically relevant interval. Calculation using the
parameters MS = 7, t′ = tL/R = 0.5, MD = 30, and M = 102. This calculation
shows signs of finite size effects in the difference between the current-current and
the current-density calculations of the conductance.

on a non-logarithmic scale in Fig. 3.2(b), and we choose η within this range.
Increasing further the value of η we get again a reduced on-resonance value
of the conductance due to the significant broadening introduced by the large
η, and eventually the physics is no longer described satisfactorily.

Similar considerations are made regarding the damping, and for fixed
number of damped links MD we find a range of d values that produce es-
sentially identical physical results, as shown in the example in Fig. 3.3,
indicating the range of validity of the DBC’s. Additionally we find that the
actual value of MD is not significant (for MD & 30) as long as the corre-
sponding value of the damping factor d is tuned such that the damping at
the edge reaches values of the same order of magnitude. The leads used are
sufficiently long to keep the damped region separated from the chain, thus
allowing Friedel oscillations at the edge of the chain to decay before reaching
the damped region. For all calculations presented in this chapter the values
MD = 30 and d = 0.8 are used while the specific value of η varies somewhat
between the calculations.

These example calculations shown in Figs. 3.2 and 3.3 for the parame-
ter determination show signs of finite size errors in the deviation between
the current-current result, fJJ , and the current-density result, fJN . In
Chap. 3.1.2 we discuss the finite size effects for the results presented, and in
Chap. 3.1.3 we show that the momentum-space representation of the leads
gives much better resolution.

It should be mentioned that the damped boundary conditions make the
convergence rate in numerical calculations much slower. A finite gate poten-
tial, µg, changes the particle number in the structure and the excess particles
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Figure 3.3: Example of an exact diagonalization calculation of the resonant value of
the conductance gres versus the damping factor d. The parameters used areMS = 7,
t′ = tL/R = 0.5, MD = 30, and M = 102. This calculation shows signs of finite
size effects in the difference between the current-current and the current-density
calculations of the conductance.

come from the bath property of the DBC’s. We therefore face the problem
that the damping should be sufficiently strong to provide a reasonable parti-
cle bath but at the same time a strong damping decreases the coupling of the
strongly damped region to the rest of the system. To remedy the slow con-
vergence in the DMRG calculations we turn on the damping in steps and
perform several finite system DMRG sweeps for each such damping step.
In other words, we perform a complete finite lattice calculation employing
typically 11 sweeps and then initiate the scaling sweeps. The damping is
typically turned on in 4 steps, d = 0.95, 0.9, 0.85, 0.8, and between each step
4-5 DMRG sweeps are performed. This allows DMRG to gradually opti-
mize the basis to include the damping in the leads and provides a more
gradual decoupling of the damped regions from the rest of the system, thus
improving the convergence rate at the cost of more DMRG iterations.

Despite this effort to improve the convergence rate the resolvent equa-
tions for the conductance are still ill-conditioned and standard solvers like
the Conjugate Gradient Method do not converge [60]. The DMRG calcula-
tions presented in Fig. 3.4 and Fig. 3.5 were done keeping up to m = 1200
states per block in the DMRG truncation. We do not fix the number of
states per block to be m but rather fix the dimension of the target space to
be at least m2, see also Chap. 2.2.1 for further details. In the calculations
presented here this corresponds to an increase of block states of typically
15% − 30% [60].

With the free parameters of the model determined we proceed to present
results calculated with the real-space setup for the interacting resonant
MS = 7 site chain.
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(a) Single resonant level, MS = 1 and M = 102. g’s denote DMRG
results, f ’s denote exact diagonalization results, and GF denotes the
exact Lorentzian result in the infinite lead limit.
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(b) Seven site chain, MS = 7 and M = 150, in the non-interacting limit,
V = 0.0. The conductance spectrum is symmetric around zero gate
potential, and we show only the positive part. In the weak coupling limit
the position of the resonances is given by the energy levels of the isolated
structure. Figure based on an exact diagonalization calculation.

Figure 3.4: Conductance, g, versus external potential µg (a) for a single resonant
level and (b) for an extended chain consisting of seven sites in the non-interacting
limit. g’s denote DMRG results and f ’s denote exact diagonalization results, while
JJ denotes the current-current correlator and JℓN denotes current-density cor-
relators. The calculations were performed with the real-space DMRG setup and
parameters t′ = tL/R = 0.5, tD = 1, MD = 30, d = 0.8, and η = 1/M .
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3.1.2 Results

Here we present DMRG and, in the non-interacting limit, exact diagonal-
ization calculations for a single resonant level, Fig. 3.4(a), and a resonant
MS = 7 site chain, coupled symmetrically to non-interacting left and right
leads. For the extended structure we present results in the non-interacting
limit, Fig. 3.4(b), and for weak and strong interaction, Fig. 3.5(a) and 3.5(b).
As discussed in Chap. 2.3.2 we use a particle-hole-symmetric interaction, re-
sulting in a conductance spectrum that is symmetric around µg = 0, and we
therefore show results for positive gate potential only.

The spinless single resonant level is generically non-interacting and serves
as a testing ground for the approach.1 The exact result for the conductance
in the symmetrically coupled case can be shown to be a Lorentzian of full
width 4t′2 at half maximum, where t′ = tL = tR. In Fig. 3.4(a) we show
exact diagonalization and DMRG calculations for the single resonant level
and the two sets are indistinguishable. This verifies that the truncation
error introduced by the DMRG is negligible. Furthermore we have plotted
the exact Lorentzian result, and the agreement between the three curves
is good, demonstrating the level of accuracy of the Kubo approach with
real-space leads.

The expected shape of the broadened peak is that of an area normalized
Lorentzian LA of half-width η convoluted with the unbroadened physical
result [60]. From Greens function calculations the exact result for the single
resonant level is a height normalized Lorentzian LH , and thus the result
broadened by η is

g(µg) = (LA ∗ LH)(µg) =
Γ

2

η + Γ/2

(µg − µ0)2 + (η + Γ/2)2
. (3.3)

While not reaching the unitary limit gres[e
2/h] = 1 the DMRG approach gets

close. Performing a linear expansion in η of Eq. (3.3) yields the value on-
resonance gres ≈ 1− 2η/Γ, and inserting for the resonant level in Fig. 3.4(a)
the values of η and Γ = 2t′2 yields gres ≈ 0.96. Comparing this value to
the DMRG data for MS = 1 shows that this result agrees with the resonant
value found using the current-density correlator. By contrast the current-
current correlator displays an additional broadening, also apparent from the
expression in Eq. (3.1), due to the linear expansion in frequency performed
when taking the DC limit, as shown in App. B.

Although the physical conductance of a system is independent of the
method used in calculating it we find a systematic difference between the
current-current and the current-density correlators in the real-space setup

1In Sec. 3.2 we consider the IRLM, a resonant level including Coulomb interaction of
the level with the first lead sites. Here the level is treated as non-interacting and used
only as a benchmark system.
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(a) Seven site chain, MS = 7 and M = 150, in the weakly interacting
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0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5  6  7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g[
e2 /h

]

N
D

µg

gJJ gJ1N ND

(b) Seven site chain, MS = 7 and M = 150, in the strongly interacting
regime, V = 5.0. Notice the offset of resonance positions of the order V

as compared to the non-interacting case.

Figure 3.5: Conductance, g, and number of particles on the dot, ND, versus external
potential µg for a resonant 7 site chain. JJ denotes the current-current correlator,
and JℓN denotes the current-density correlator. The calculations were performed
using the real-space setup with parameters t′ = tL/R = 0.5, tD = 1, MD = 30,
d = 0.8, and η = 1/M . The interaction on the chain is smoothed over the contacts
with γ = 0.5.
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calculations, a difference attributed to the finite size of the system. Specifi-
cally close to resonances the current-density correlator generally gives better
results, which is due to the additional energy dependent broadening given
by H0−E0 in the current-current correlator. The opposite is true in the tails
where the current-current correlator is more reliable since it is less sensitive
to changes in the density of the leads.

Both sets of DMRG data deviate from the unitary value for the con-
ductance on-resonance because of the broadening due to the finite system.
Because of the numerical problems involved in the scaled boundaries of
the real-space setup it is limited how much can be gained by using larger
systems or stronger damping. In Chap. 3.1.3 we present results for the res-
onant MS = 7 site chain using the momentum-space representation of the
leads. The comparison shows the significantly improved resolution of the
momentum-space setup due to the reduced finite size effects in this setup.

But first we discuss the position and width renormalization of the reso-
nances.

Resonance position

In the weak coupling limit the position of the resonances is given by the
energy levels of the isolated system, found for instance by diagonalization of
the Hamiltonian of the isolated chain. Thus the position of the resonances
is determined by the parameters of the chain, tD and V , while the width is
determined by the broadening due to the leads, t′ = tL/R.

The position of the resonances is hence described by the addition spec-
trum, for instance for going from ND − 1 to ND particles on the dot gives a
resonance at the gate potential

µND−1→ND
g = END−1

0 − END
0 , (3.4)

where END
0 is the energy of the isolated chain occupied by ND particles.

For example in Fig. 3.5 the particle number is changed by one each time a
peak in the conductance is crossed, such that eventually the resonant chain
is completely empty when the applied gate potential becomes sufficiently
large.

In an effective charging model the additional splitting of the levels due
to the interaction is linear in the repulsive interaction V . By contrast, in
our microscopic model the interaction leads to an overall offset for the non-
central peaks, of the order ∼ V , while their mutual distance is governed by
the kinetic energy, of the order ∼ tD, as can be seen in Fig. 3.5. Thus this
microscopic model exhibits Coulomb blockade behavior where the additional
charging of the chain depends on the occupation, and since we use a particle-
hole-symmetric interaction also the discharging exhibits Coulomb blockade
for the holes.
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Figure 3.6: Illustration of the reduced lattice picture for strong interaction: The
interaction is so strong that the fermions avoid each other, but otherwise move
freely. This can be modeled by hard-core free fermions on a lattice of the reduced
size M∗

S = MS −ND.

In the large interaction limit V ≫ tD a simple picture explaining this
behavior can be given. In this limit the effect of one fermion in the system
on the others is to limit the space available for the other fermions. However
the other fermions still move freely on the remaining lattice, as illustrated
in Fig. 3.6. Thus the kinetic energy of the fermions can be approximated
by freely moving hardcore fermions on a lattice of a reduced size, M∗

S =
MS −ND. In this approximation the interacting fermions are described by
effective hard-core particles of the size of the interaction range, compare
Refs. [68, 69]. Formalizing this the addition spectrum in Eq. (3.4) can be
expressed as

µND−1→ND
g =

V − 2tD

( ND−1
∑

n=1

cos(
πn

MS − (ND − 1)
) −

ND∑

n=1

cos(
πn

MS −ND
)
)

, (3.5)

where ND should be small enough that the chain is still in a delocalized
state – i.e., the zero gate peak is not described by this model.

In Tab. 3.1 we show a comparison of resonance positions as predicted
by the reduced lattice (RL) model in Eq. (3.5), as predicted by exact diag-
onalization (ED) of the isolated chain, and resonances found in our DMRG
calculations for interaction strengths V = 5, 20, and 30. The position of the
outermost resonance from 0 → 1 particle fits well for both predictions, while
the next ones from 1 → 2 and 2 → 3 deviate somewhat. The RL prediction
for the transition 2 → 3 is not expected to be accurate since ND = 3 is
a localized charge density wave like state. Further the central resonance
is not described by this picture as the transition is between two localized
states, and the resonance is anyway pinned to zero gate potential by the
particle-hole symmetry. The comparison in Tab. 3.1 shows a fair agreement
such that the simple model captures the essential features of the Coulomb
blockade renormalization of the resonances in the large interaction limit.

Resonance width

The conductance spectra in Fig. 3.5 show that within the weakly interacting
regime of the model, V = 1.0, the interaction does not lead to any significant



62 Spinless models

Table 3.1: Table of resonance positions of the MS = 7 site chain with interaction
strengths V = 5, 20, 30, γ = 0.5, and t′ = tL/R = 0.5 as predicted by the reduced
lattice (RL) model (Eq. (3.5)), by exact diagonalization (ED) of the isolated chain,
and as found from the conductance peaks in our DMRG calculations using the real-
space setup. The RL prediction for ND = 3 is not expected to be accurate since
the chain is in a localized charge density wave like state.

V 5 20 30

ND 1 2 3 1 2 3 1 2 3

RL 6.73 5.50 2.76 21.73 20.50 17.76 31.73 30.50 27.76

ED 6.77 5.88 3.85 21.75 20.63 18.03 31.74 30.59 27.94

DMRG 6.76 5.79 3.66 21.74 20.59 17.97 31.74 30.60 27.95

change of the resonance width, whereas the position of the resonances exhibit
Coulomb blockade behavior.

By contrast in the strongly interacting regime there is a strong renormal-
ization of the resonance width. The position again demonstrates Coulomb
blockade renormalization, and additionally the resonances are sharpened
significantly by the interaction. For the central peak this can be understood
from a simple argument: At zero gate potential two configurations are en-
ergetically equivalent, having 3 and 4 fermions in the chain respectively. As
soon as a small potential is applied one of the two becomes favorable, and a
single (localized) state is selected, hence suppressing transport very quickly
and resulting in a narrow resonance.

In the infinite system length limit and for interaction strengths larger
than V = 2 the model studied here is an insulator [70, 71, 72, 73], and
from the data presented we see how the insulator evolves; rather than being
due to a suppression of the resonant value by the interaction it is by a
suppression of the resonance widths. The resonant value of the conductance
remains unitary, but the width of the resonances are strongly suppressed by
the interaction.

While weak repulsive interaction does not influence the width of the
resonances significantly compared to the non-interacting case, the strong
repulsive interaction strongly reduces the resonance width. Thus strong
interaction within the finite chain tends to suppress the transport compared
to the non-interacting case, in the sense that the off-resonance transport is
reduced by the interactions.

3.1.3 Real- vs momentum-space leads

In order to illustrate the accuracy of the momentum-space compared to
the real-space leads we have recalculated some of the results for a resonant
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(a) MS = 7 and V = 0.0. Exact diagonalization calcula-
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(c) MS = 7 and V = 5.0. DMRG calculation.

Figure 3.7: Conductance, g, versus gate potential µg for a resonant MS = 7 site
chain. The calculations were performed using the momentum-space leads and the
parameters t′ = tL/R = 0.5 and tD = 1. A total of 120 sites was used in the
momentum-space leads, corresponding to 40 logarithmically scaled sites and 20 lin-
early scaled sites per lead. For the non-interacting system exact diagonalization was
used, while the interacting data are DMRG calculations. Note that the interaction
is not smoothed over the contacts – i.e., γ = 0.0. The lines added to the DMRG
results are guides to the eye.
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MS = 7 site chain using the momentum-space DMRG setup and using γ = 0.
The plots for V = 0, V = 1, and V = 5 are shown in Fig. 3.7, where lines
connecting the DMRG data points have been added as a guide to the eye.

It is clearly seen that the momentum-space leads enable sufficient accu-
racy to resolve the resonances and reach the unitary limit perfectly even for
the outermost sharp resonances. Further we are able to investigate the shape
of the resonances. In Fig. 3.8 for V = 1 and Fig. 3.9 for V = 5 we show a
zoom in on each of the 4 resonances found for positive gate potential. To
each figure is fitted a Lorentzian of half width w centered at µg = µ0, where
the actual parameters are specified in the figures. The agreement between
the Lorentzian and the DMRG data is good, showing that indeed the shape
of the resonances remains roughly Lorentzian in both regimes. Plotting the
conductances on a logarithmic scale for V = 5 reveals that there are devi-
ations in the low conductance regimes, such that the shape is not perfectly
Lorentzian.

Since the momentum leads enabled an improved energy resolution of the
resonances the linewidths can be extracted, and an overview of the widths
and positions is given in Tab. 3.2. For convenience we also give the widths
in units of the corresponding non-interacting resonance widths. It is seen
that the width renormalization in the weakly interacting regime is moderate
while in the strongly interacting regime there is a strong reduction of the
resonance width, as also evident from the real-space calculations presented
in Fig. 3.5.

A note regarding the fitting of Lorentzians in the non-interacting and
weakly interacting cases: The resonances are not well separated from each
others, as in the strongly interacting case. Thus the tails of the resonances
overlap, making the fitting somewhat ambiguous. The fits presented where
performed focusing on the top of each resonance where the effect of tail is
minimal, which of course reduces the fitting window.

3.1.4 Conclusions

In this part of the thesis we have considered transport through an inter-
acting resonant chain consisting of 7 sites, using DMRG evaluations of the
Kubo formula for conductance. This combined approach is capable of han-
dling strong correlations, and we have used it to study the effects on trans-
port properties of repulsive interaction mainly within the resonant chain.
We have shown that repulsive interaction can have a major impact on the
transport properties; the results presented show that in the weakly interact-
ing regime the resonance width is not significantly changed by the interac-
tion compared to the non-interacting case, while in the strongly interacting
regime interactions have a significant effect on the resonance widths, sup-
pressing the off-resonance transport strongly.

The off-resonance transport suppression by the interaction is a precursor
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Figure 3.8: A zoom in on each of the 4 resonances of a resonant MS = 7 site chain
for positive gate potential and weak interaction V = 1.0, t′ = tL/R = 0.5, tD = 1,
and γ = 0.0. To each DMRG calculation is fitted a Lorentzian of half width w and
centered at µg = µ0, where the actual values are given in the plots and reproduced
in Tab. 3.2. It is seen that the line shape remains roughly Lorentzian, although the
tails of the resonances overlap and give rise to deviations.
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Figure 3.9: A zoom in on each of the 4 resonances of a resonant MS = 7 site chain
for positive gate potential and strong interaction V = 5.0, t′ = tL/R = 0.5, tD = 1,
and γ = 0.0. To each DMRG calculation is fitted a Lorentzian of half width w and
centered at µg = µ0, where the actual values are given in the plots and reproduced
in Tab. 3.2. It is seen that the line shape remains roughly Lorentzian.
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Table 3.2: Table of resonance positions and widths of an interacting MS = 7 site
chain with parameters γ = 0.0, t′ = tL/R = 0.5, and tD = 1.0. For comparison the
widths of the interacting cases are additionally given in units of the corresponding
non-interacting resonance widths. It is seen that the width renormalization in the
weakly interacting regime is moderate, while in the strongly interacting regime
there is a significant reduction of the resonance widths.

V 0.0

µ0 0.0 0.75 1.40 1.84

w 1.35 10−1 1.13 10−1 6.43 10−2 1.83 10−2

V 1.0

µ0 0.0 1.22 2.22 2.81

w 1.15 10−1 9.06 10−2 4.45 10−2 1.09 10−2

∼ 0.85 wV =0 ∼ 0.80 wV =0 ∼ 0.69 wV =0 ∼ 0.60 wV =0

V 5.0

µ0 0.0 3.82 5.86 6.77

w 2.88 10−2 2.37 10−2 1.26 10−2 2.81 10−3

∼ 0.21 wV =0 ∼ 0.21 wV =0 ∼ 0.20 wV =0 ∼ 0.15 wV =0

of the formation of an insulating state when the system is infinitely long
and the interaction V exceeds the value 2 [73]. The insulator is formed by a
reduction of the width w of the resonances, while the resonant value of the
conductance remains unitary.

By performing essentially the same calculations representing the leads
in real- and momentum-space we have illustrated the difference in accuracy
between these two setups. The increased accuracy of the momentum-space
setup enabled a study of the individual resonances, extracting widths and
positions, and showing that the line shapes remain roughly Lorentzian in
both regimes.

In both the weakly and strongly interacting regimes the microscopic
model studied displays Coulomb blockade renormalization of the resonance
positions, where the charging of the model depends on the occupation and
interaction strength. In the limit of strong interaction we have given a
simple picture for the resonance position and explained the sharpening of
the resonances.
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3.2 Interacting resonant level models

Perhaps the simplest possible model in a transport setup is a single spin-
less resonant level coupled to leads. Including nearest neighbor interaction
only within the nanostructure makes this model generically non-interacting.
Allowing additionally interaction on the contact links defines the model we
denote by the interacting resonant level model (IRLM). The motivation for
studying resonant level models with interaction on the contact links is the
physically realistic situation that the interaction inside the transport region
does not vanish abruptly in the contacts, and the resonant level model is a
simple model incorporating this effect.

Resonant level models in various formulations are common textbook ex-
amples because of their simplicity [27], which also make them a good testing
ground for new methods and approaches. For the IRLM in particular we
would like to mention two recent contributions, Refs. [64, 65] using the scat-
tering Bethe ansatz, and Ref. [74] using a perturbative approach. While
we find the same qualitative behavior as both these groups, it is our belief
that our approach covers regimes and aspects not accessible by the other
approaches. While Ref. [74] has problems reaching the unitary limit we get
it perfectly, and Ref. [64] does not yet cover the case of having the level
resonant, and thus cannot target the infinitesimal voltage regime we are
considering. Most of the results presented in this section were published in
Ref. [75].

In the previous section it was shown that strong interaction inside the
nanostructure itself suppresses the off-resonance transport. In this section
we show that even a small leak of interaction into the contacts can increase
the off-resonance transport significantly, and that the resonance width shows
a non-monotonic dependence on the interaction in the weak coupling limit
that we target here.

In this part we use the enhanced DMRG scheme where part of the leads
are put in momentum-space, see Chap. 2.3.4 for details. This facilitates a
much higher energy resolution which is needed for these calculations. An
example setup is shown in Fig. 3.10 illustrating a four site resonant chain.
We include a part of the lead in real-space to account for local – i.e., high-
energy physics. The nanostructure is denoted by S, while the combined
nanostructure and real-space sites in the leads are denoted the extended
system, SE, with ME real-space sites in total. In the figure the interactions
and hopping matrix elements are indicated, and note that the gate potential
µg is only applied to the nanostructure.
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Figure 3.10: General layout in the momentum-space setup. The interacting chain
is coupled to non-interacting leads via hopping matrix elements t′ = tL/R. The
hopping matrix elements and interaction inside the chain is given by tD and V
respectively and the leaking of interaction into the contacts is governed by γ. The
leads are modeled by MAdd sites kept in real-space, close to the chain, and then
coupled to momentum-space leads via discretization dependent hopping matrix ele-
ments tk, such that the real-space site couples to all momentum-space sites. There
is full flexibility to choose the discretization scheme appropriate for the calculation,
and the direct coupling to the low-energy sector prevents problems with trapping
of fermions in the low-energy sector.

The Hamiltonian is H = HRS +HMS +HT ,

HRS =
∑

j∈S

µgc
†
jcj −

∑

j,j−1∈SE

(
tjc

†
jcj−1 + h.c.

)

+
∑

j,j−1∈SE

Vj

(

nj −
1

2

)(

nj−1 −
1

2

)

, (3.6a)

HMS =
∑

k∈L,R

εkc
†
kck, (3.6b)

HT = −
∑

k∈L

(
tkc

†
kc1 + h.c.

)
−

∑

k∈R

(
tkc

†
kcME

+ h.c.
)
, (3.6c)

where c†ℓ and cℓ are the (spinless) fermionic creation and annihilation oper-

ators at site ℓ and nℓ = c†ℓcℓ is the local density operator at site ℓ. HRS ,
HMS, and HT denote real-space, momentum-space, and tunneling Hamilto-
nians respectively, and the indices 1 and ME denote the first and last site
in SE . We use a finite bandwidth for the leads, such that the band ranges
from −D to D in energies, and mostly consider a particle-hole-symmetric
cosine-band between ±2.

Using the momentum-space DMRG framework reviewed in Chap. 2.3.4
we have calculated the linear conductance of the interacting resonant level
model and interacting chains of MS = 3 and MS = 5 sites, both including
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interaction on the contact links. The IRLM without interaction on the
contact links is completely non-interacting, while for the 3 and 5 site chains
two different interactions are present, V inside the chain and γV on the
contact links, such that the parameter γ models the leak of the interaction
into the contacts.

In the calculations presented for the interacting resonant level model and
the short resonant chains considered here we typically keep up to m = 800
states per block, leading to typical target space dimensions of 600.000 −
640.000 states. A total of 120 sites was used in the momentum-space leads,
corresponding to 40 logarithmically scaled sites and 20 linearly scaled sites
per lead.

First we consider the simplest model where the transport region consists
of a single level, and demonstrate the non-monotonic transport enhancement
for this model. We then proceed and consider short resonant chains, and
find the same kind of behavior for these extended systems.

3.2.1 The interacting resonant level model

In this part we consider the simplest case of a single resonant level interacting
with the neighboring lead sites, and γ = 1 for this model such that the full
interaction is on the contact links. Using the momentum-space DMRG setup
we have calculated the conductance of this model, and the resulting spectra
are shown in Fig. 3.11 for two different couplings to the leads. To each set of
DMRG data is fitted a Lorentzian with a width w, where the specific values
are given in the figures. We find in general that the shape of the resonances
remain Lorentzian, but with a strong and non-monotonic renormalization
of the width by the interaction. For example with t′ = tL/R = 0.01 and
γV = 1.0 the resonance width is a factor of 10 larger compared to the
non-interacting case.

For repulsive contact interactions below the Fermi velocity, γV < vF = 2,
we find a strong increase in the resonance width, that become up to an order
of magnitude larger than the non-interacting result. However, for repulsive
interaction larger than the Fermi velocity, γV > vF = 2, the off-resonance
transport is once again suppressed when increasing the interaction.

In order to investigate the dependence of the resonance width and po-
sition on the band cutoff in the leads, we have performed calculations on
a non-particle-hole-symmetric model, such that the resonance is no longer
pinned at µg = 0 by the particle-hole symmetry. In Fig. 3.12 we have used
a linear band in order to keep the Fermi velocity fixed, and varied the band-
width an order of magnitude to investigate what sets the scale for the width
renormalization. It is apparent that the result is independent of the cutoff
parameter D, and we conclude on this basis that the Fermi velocity rather
than the band cutoff sets the relevant scale in the model.

For completeness we have also performed calculations on the interacting
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Figure 3.11: Conductance of the interacting resonant level model with γ = 1 for two
different couplings to the leads, and the leads modeled by a cosine-band between
±2. To each set of DMRG data has been fitted a Lorentzian of half width w at half
maximum. The repulsive contact interaction results in a non-monotonic behavior
for the resonance width versus the interaction.
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Figure 3.12: Conductance of the non-particle-hole-symmetric interacting resonant
level model with γ = 1, t′ = tL/R = 0.1, and the leads modeled by a linear band
between ±D. To the DMRG data has been fitted a Lorentzian of half width w at
half maximum. The different data sets fall on the same Lorentzian curve illustrating
that the resonance position and width are independent of the cutoff.
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Figure 3.13: Conductance of the interacting resonant level model with attractive
interaction, γ = 1, t′ = tL/R = 0.03, and the leads modeled by a cosine-band
between ±2. To each set of DMRG data has been fitted a Lorentzian of half width
w at half maximum. The attractive contact interaction suppresses the off-resonance
transport even for weak interaction strengths.
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Table 3.3: Table of resonance widths of the interacting resonant level model. The
resonance displays a strong and non-monotonic dependence on the resonance width
for both values of the coupling.

(a) Resonance width w

for t′ = tL/R = 0.01 ver-
sus V .

V w

0.0 2.00 10−4

0.01 2.13 10−4

0.03 3.22 10−4

1.0 2.09 10−3

5.0 8.94 10−4

25.0 1.01 10−5

(b) Resonance width w

for t′ = tL/R = 0.03 ver-
sus V .

V w

−0.3 4.65 10−4

−0.1 1.24 10−3

−0.01 1.78 10−3

0.0 1.81 10−3

0.03 2.05 10−3

0.1 2.51 10−3

1.0 1.01 10−2

5.0 4.48 10−3

25.0 9.04 10−5

resonant level model for attractive interaction using t′ = tL/R = 0.03, as
seen in Fig. 3.13. Using an interaction of ten times the hopping, V = −0.3,
reduces the resonance width by a factor of 4, and the attractive interac-
tion thus suppresses the off-resonance transport strongly. The attractive
interaction could for instance be realized by means of a substrate, such that
the screening cloud of a particle attracts other particles. For convenience we
have collected the resonance widths of the IRLM for the different parameters
used in Tab. 3.3.

It was suggested by Borda et al. [74] that the explanation for the trans-
port enhancement should be found in the densities of the neighboring lead
sites. It was argued that a repulsive interaction keeps the first lead sites
empty such that electrons can easily tunnel in, go through the structure and
leave again through the drain electrode [74]. In order to test this explana-
tion we have calculated the density of the dot, nd, and the average density
of the first lead sites, nc, versus the interaction strength of the IRLM for two
different finite values of the gate potential, µg = 0.0002 and µg = 0.0005.2

The results are shown in Figs. 3.14. The large increase in resonance width
is found in the interval 0 < V < 2, while larger interactions again suppress
the off-resonance transport. In this interaction interval we find a charging of
the dot, and the lead density increases slightly rather than decreases. Thus
it appears that the suggestion in Ref. [74] is not the correct mechanism.

In the very strongly interacting regime where the transport is again

2Using µg = 0.0 would result in strict half filling for each site due to the particle-hole
symmetry.
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Figure 3.14: Density of the dot, nd, and the average density of the first lead sites,
nc, versus interaction strength of the interacting resonant level model for two finite
values of the gate potential µg. Due to the finite gate potential the resonant level
is depleted in the non-interacting case. The repulsive interaction on the contact
links initially increases the density towards half filling, and for stronger interaction
strengths again depletes the level. Hence the densities do follow the conductance to
some extent but the leads are not depleted by the increasing interaction as suggested
by Borda et al. [74], rather charge is built up in the leads close to the resonant
level.
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suppressed the calculated densities indicate a buildup of charge close to the
level, while the level itself is emptied. It is apparent from Fig. 3.14 that the
density and the conductance are correlated, but it remains an open question
what the governing mechanism is [75].
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Figure 3.15: Conductance of an interacting resonant MS = 3 site chain with cou-
pling t′ = tL/R = 0.05 to the leads, tD = 0.5, and the leads modeled by a cosine-
band between ±2. To each set of DMRG data has been fitted a Lorentzian of
half width w at half maximum. The non-monotonic dependence on the resonance
width is absent for the resonant chain with this strength of the interaction since
the contact interaction is limited in magnitude by V = 2.0. The increase is present,
however, indicating that the increase by contact interaction is stronger than the
corresponding decrease due to interactions inside the chain.

3.2.2 Resonant chains with contact interaction

To investigate if the transport enhancement is a special feature of the single
resonant level we have performed calculations for resonant MS = 3 and
MS = 5 site chains. Within these models two different interactions are
present, the nearest neighbor density-density interaction V within the chain,
and the leaking of this interaction onto the contact links γV .

Figs. 3.15 and 3.17 show for different interaction strengths that the cen-
tral peak of the conductance spectrum for the MS = 3 site chain exhibits the
same qualitative behavior as the single resonant level. The suppression of
transport by the interaction inside the chain, as demonstrated in Chap. 3.1,
is apparent in the figures when γ = 0. Nevertheless a small leak of the
interaction into the contacts results in a significant enhancement of the off-
resonance transport. For V = 2.0 the width of the resonance for γ = 1.0 is
almost an order of magnitude larger than for γ = 0.0, which is comparable
to the single level case. For V = 3.0 and V = 5.0 the suppression for γ = 0
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Figure 3.16: The finite gate potential resonance of an interacting resonant MS = 3
site chain with coupling t′ = tL/R = 0.05 to the leads, tD = 0.5, and the leads
modeled by a cosine-band between ±2. The interaction V = 2.0 is spread on the
contact links by γ. To each set of DMRG results is fitted a Lorentzian with half
width w at half maximum, and located at µg = µ0, and the specific values are
given in the figures. The increase in resonance width is present for the finite gate
resonances, however the increase is less pronounced, and additionally the position
of the resonances is changed by the interaction. Notice the different µg-scales used
in the plots. The positions and widths are collected in Tab. 3.4.
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Figure 3.17: Conductance of an interacting resonant MS = 3 site chain with cou-
pling t′ = tL/R = 0.05 to the leads, tD = 0.5, and the leads modeled by a cosine-
band between ±2. Two different interactions V were used, and the interaction is
spread onto the contact links by γ. To each set of DMRG data has been fitted
a Lorentzian of half width w at half maximum. These systems display a non-
monotonic behavior in the resonance width indicating that the increase is stronger
than the corresponding decrease due to interactions inside the chain.
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Figure 3.18: Conductance of an interacting resonant MS = 5 site chain with cou-
pling t′ = tL/R = 0.05 to the leads, tD = 0.5, and the leads modeled by a cosine-
band between ±2. The interaction used is V = 2.0 and it is spread onto the contact
links by γ. To each set of DMRG data has been fitted a Lorentzian of half width w
at half maximum. The MS = 5 site chain displays a similar increase in resonance
width as the IRLM.

is comparably stronger than for V = 2.0, but the enhancement is still signif-
icant, and the maximal resonance widths are found for γ = 0.75 and γ = 0.4
respectively, consistent with a maximum value found for γV ∼ vF = 2.0.

Since the contact interaction is limited in magnitude by V the non-
monotonic dependence on the resonance width is only found for sufficiently
large values of V . In Fig. 3.15 the non-monotonicity is absent since γV < 2,
whereas in Figs. 3.17 the non-monotonicity is clearly visible when γV > 2.

The MS = 3 site chain has additionally a resonance located at finite
gate potential, and a natural question to ask is whether this also shows the
same non-monotonic behavior versus interaction on the contact links. As
the position of the resonance is renormalized by the contact interaction the
resonances cannot be represented in the same figure. In Figs. 3.16 we have
plotted the resonances as well as Lorentzians fitted to the data. For an easy
comparison the extracted resonance widths and positions are collected in
Tab. 3.4. The finite gate resonance also shows an increase in the width when
including interaction on the contact links, but the increase is not nearly as
pronounced as for the central resonance. Whereas the width of the central
resonance increases up to an order of magnitude, the width of the finite gate
resonance merely increases by a factor of two but does show an increase for
repulsive contact interaction.

Finally we have considered the central resonance of an interacting reso-
nant MS = 5 site chain. In the weakly coupled limit this resonance behaves
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similarly to the 3 site chain, as seen in Fig. 3.18, such that there is a differ-
ence of an order of magnitude between having no interaction on the contact,
γ = 0, and having the full interaction on the contact, γ = 1.

Thus we have shown that the enhancement by a small interaction on the
contacts is stronger than the suppression by a strong interaction inside the
chain. Hence the strong and non-monotonic enhancement of the transport
by interaction on the contact links is not a peculiarity of the single level
model, but a generic feature for systems with interaction on the contacts.

Table 3.4: Table of resonance positions and widths of an interacting resonant MS =
3 site chain with t′ = tL/R = 0.05 and tD = 0.5. The central peak displays a strong
increase in the resonance width, while the similar effect for the finite gate peak
is less pronounced. Tab. (a) shows the resonance widths and positions for the
interactions V = 0 and V = 2, while Tabs. (b)-(d) compare directly the width of
the central resonance for different parameters.

(a) Resonance width w and position µ0 for V = 0 and V = 2,
versus γ.

V = 0.0 V = 2.0, γ = 0.0

µ0 0.0 0.71 0.0 2.366

w 2.51 10−3 1.26 10−3 1.7 10−3 5.39 10−4

V = 2.0, γ = 0.5 V = 2.0, γ = 1.0

µ0 0.0 2.343 0.0 2.296

w 8.7 10−3 9.35 10−4 1.3 10−2 1.01 10−3

(b) Resonance width w

for V = 2.0 versus γ.

γ w

0.0 1.7 10−3

0.5 8.7 10−3

1.0 1.3 10−2

(c) Resonance width w

for V = 3.0 versus γ.

γ w

0.0 1.19 10−3

0.2 4.58 10−3

0.5 9.42 10−3

0.75 1.02 10−2

1.0 9.00 10−3

(d) Resonance width w

for V = 5.0 versus γ.

γ w

0.0 6.18 10−4

0.2 4.37 10−3

0.4 5.80 10−3

0.5 5.39 10−3

1.0 2.35 10−3

3.2.3 Conclusions

A common paradigm in transport calculations is to make a hard distinc-
tion between the interacting transport region and the non-interacting leads.
Correlation effects are thus kept within the transport region, and the leads
serve simply as structureless reservoirs of particles. For some methods this
distinction is principal and essential for the success of the method, while for
others it is a reasonable assumption.
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In this chapter we have considered transport through a single resonant
level and short interacting resonant chains, interacting additionally with the
neighboring lead sites via a density-density interaction. The effect of repul-
sive interaction on the contact links has been studied and it was found that
the widths of the resonances have a non-monotonic dependence on the inter-
action strength. For the models considered in this chapter even a small leak
of the interaction into the contacts influences the off-resonance transport
strongly. We have shown this feature to be stable against the suppression
of transport by interaction within the resonant chains themselves. The res-
onance at zero gate potential as well as the finite gate resonances display a
width dependence on the interaction, where for the latter the effect is less
pronounced. Finally by considering a non-particle-hole-symmetric model we
have shown that these conclusions are independent of the cutoff.

The results presented in this chapter thus challenge the common division
between transport region and leads. The stability of the transport enhance-
ment suggests that this feature is universal, and demonstrates that great
care should be taken when partitioning the system, particularly regarding
the interactions.
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Electronic equipment as we know it from consumer products is based
on manipulating the charge degree of freedom of the electrons constituting
the current in the circuits. The development since the late 60’s within
the electronic industry has followed an exponential increase in the number
of transistors in CPU’s, and a corresponding exponential decrease in the
feature size in for instance memory cells. This impressive relation was first
predicted in 1965 by co-founder of Intel Corporation Gordon E. Moore and
is commonly referred to as Moore’s law [5].

As an illustration of the status of the technological development in the
industry current production line CPU’s feature structures of 45 nm. How-
ever successful the silicon industry has been in keeping up the speed of
development it is clear that this cannot continue indefinitely. In fact the In-
ternational Technology Roadmap for Semiconductors1 (ITRS) predicts for
many known manufacturing processes and designs that the limit of existing
technology will be reached in the coming years. The colorcoded schematics
released by ITRS has lead to the name “the red brick wall” for this event
as more and more fields in the schematics become red, indicating that no
known solutions exists for the advancement of a given technology. It is clear
that the industry is aware of these problems, and are struggling to find
suitable solutions to sustain Moore’s law.

The electron has two different degrees of freedom, the charge and the
spin. In recent years another field has emerged, primarily within fundamen-
tal science, manipulating the spin rather than the charge degree of freedom
[76]. This field of research is commonplace referred to as spintronics, and
the hope is to be able to construct analogs of electronic circuitry using spins
rather than charges. A precise definition of the field of spintronics is some-
what lacking but we will use it to refer to transport where the spin can be
manipulated by external means. In this work a simple model that exhibits
this kind of behavior is considered. In order to approach the topic ‘from
below’ it is important to construct simple models exhibiting the essential
mechanisms at play in more complicated structures. The model we consider
is known as the ferromagnetic Anderson model with an applied magnetic
field ( ~B-field) [77, 78], abbreviated the FAB model.

4.1 The ferromagnetic Anderson model with an

applied magnetic field

In the simplest form the model considers transport through a single resonant
level subject to an external magnetic field, and with spin-polarized leads.
The magnetic field couples to the spin degree of freedom and hence the spin
can be manipulated by an external handle. In one limit the FAB model acts

1The ITRS is a report made by the worlds leading chip manufacturing regions to ensure
cost-effective advances in the technology, http://www.itrs.net/.
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as a spin valve where tuning the angle between the external magnetic field
and the direction of polarization from 0 to π changes the spin species that
is allowed through the dot.

The FAB model is an example of a model that exhibits both coherence
and correlation effects. Thus apart from being a spintronics model, the
FAB model also exhibits some quite general challenges for the theoretical
methods applied to it [79]. This class of models includes effects like the
Fano- and Aharonov-Bohm effects such that a successful application of the
DMRG method presented in Chap. 2.3 to the FAB would open up further
interesting models to consider.

In this chapter we first present the FAB model itself and discuss a tight-
binding formulation. We then present the DMRG setup for the model,
which involves modeling of the spin-polarized leads, as well as a spin non-
conserving interacting resonant level. These technical complications turned
out to require a different approach to the conductance than the direct DMRG
evaluation of the Kubo formula. The Meir-Wingreen formula [27] was used
instead, and an overview of this approach is presented. We then discuss
some existing knowledge about the transport behavior of the model, results
useful for benchmarking the developed DMRG setup.

Finally the first results for the model are presented and some aspects
of the physics are discussed. Due to time constraints we do not present a
thorough investigation of the FAB model, rather limit ourselves to presenting
a limited amount of data, as well as a comparison with data provided by
Jonas N. Pedersen. It will be the target of future work to investigate in detail
the behavior of the FAB model, and to perform a more rigorous comparison
with other approaches [78, 80]. We therefore conclude the chapter by giving
an overview of the future work within the FAB project.

The work on the FAB model presented in this chapter is part of an
ongoing effort in collaboration with Ph.D. student Jonas N. Pedersen2 and
Dr. Tomáš Novotný3.

4.1.1 The model

The FAB model as we consider it here describes a quantum dot with a single
spin-degenerate level with bare energy εd coupled to two (partially) spin-
polarized leads. The level in the dot is split by a magnetic field, ~B, applied
at an angle φ with the direction of magnetization in the leads, as shown
schematically in Fig. 4.1. The magnetic field is assumed to interact only
with the spin of the dot electrons, leaving the leads unaffected. It has been
argued [77] that this type of setup could be realized by using magnetic thin
films as leads, such that the magnetic field in the leads is strongly locked to

2Mathematical Physics, Lund University, Lund, Sweden.
3Department of Condensed Matter Physics, Charles University, Prague, Czech

Republic.
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the plane of the film, and the addition of a magnetic field to the dot does
not perturb the leads significantly.

φ

B

Figure 4.1: Sketch of the ferromagnetic Anderson model with an applied magnetic
field. The magnetic field, ~B, is applied at an angle φ with the direction of the
polarization, and interacts only with the spin on the transport level. The model
is a simple spintronics model exhibiting both coherence and correlation effects,
making the theoretical treatment of the model challenging. Figure from Ref. [77]

Choosing a coordinate system where the magnetization of the leads is
along the z-axis, the magnetic field is chosen to rotate in the xz-plane.
Letting φ denote the polar angle in this coordinate system the magnetic
field is given by ~B = B (sinφ, 0, cos φ), where B = | ~B| is the magnitude of
the magnetic field. With these choices the Hamiltonian of the FAB model
reads H = HL +HR +HC +HD +HB

HL,R =
∑

k∈{L,R},σ

εkσc
†
kσckσ, (4.1a)

HC = −
∑

k∈{L,R},σ

(

tkσc
†
kσdσ + h.c.

)

, (4.1b)

HD =
∑

σ

εdd
†
σdσ + Und,↑nd,↓, (4.1c)

HB = − e

m
~S · ~B. (4.1d)

Notice that excluding HB from the Hamiltonian corresponds to the Ander-
son model in the case of unpolarized leads. In the cotunneling limit, B ≫ Γ,
it is essential that the onsite interaction is not particle-hole-symmetric: As
we show later the interacting particle-hole-symmetric FAB model maps onto
the non-interacting case with a renormalized magnetic field in this limit.

The Hamiltonian in Eq. (4.1a) represents the leads, and these are
treated as non-interacting and spin-polarized, as we discuss in Chap. 4.1.3.
Eq. (4.1b) describes the tunneling between the dot and the leads through
spin-dependent hopping matrix elements tkσ. It should be emphasized that
in this description the tunneling process is diagonal in the spin of the elec-
trons, in the sense that the spin is not flipped in the tunneling process itself.
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Eqs. (4.1c) and (4.1d) describe the bare level of the dot, the first being the
isolated dot including the onsite Coulomb interaction U , and the latter the
interaction of the electron spin with the magnetic field.

Due to the non-collinearity of the polarization and the magnetic field
two different spin bases are involved, the spin basis of the leads and the spin
basis for the dot. There is a freedom of choice in the basis used for the dot;
either a diagonal basis is used such that the dot is spin conserving, but the
dot spins are rotated compared to the lead spins, or a non-diagonal basis is
used for the dot, where the dot spins and the lead spins are described in the
same basis but where the spin on the dot is no longer conserved. We adopt
the latter picture using the non-diagonal basis for the isolated dot.

The interaction between the magnetic moment of the electrons on the dot
and the magnetic field is represented by Eq. (4.1d): ~S is the spin operator
which in first quantization reads ~S = ~

2~τ , where ~τ is the vector containing the
Pauli spin matrices, ~τ = {σx, σy, σz}. The second quantized representation

of ~S is

Sx =
~

2

(

d†↓d↑ + d†↑d↓

)

, (4.2a)

Sy = i
~

2

(

d†↓d↑ − d†↑d↓

)

, (4.2b)

Sz =
~

2

(

d†↑d↑ − d†↓d↓

)

. (4.2c)

Choosing the coordinate system as described above and using the non-
diagonal basis for the dot, the Hamiltonians of the dot HD and the spin-
interaction with the magnetic field HB are4

HD =
∑

σ

(εd − σB cosφ) d†σdσ + Und,↑nd,↓, (4.3a)

HB = −B sinφ
(

d†↑d↓ + d†↓d↑

)

, (4.3b)

where σ = 1(−1) for spin ↑(↓), and the Zeeman splitting of the level is
angular dependent. Notice that we have absorbed a diagonal term from
HB into HD. The spin-flip on the dot for finite angle of the magnetic field,
given by B sinφ, destroys the spin conservation on the dot. Further the
polarization of the leads is still unspecified and can be modeled in different
ways as will be discussed later.

Despite the apparent simplicity the FAB model contains much complex-
ity due to the splitting of the (otherwise) degenerate spin level on the dot,
and the rotated spin basis due to the magnetic field. This opens up the possi-
bility of having two different paths through the dot, and leads to interference
effects, such that both correlation and coherence are important. Previous

4For convenience we use ‘natural’ units where e~

2m
= 1 such that B has the units of

energy.
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work [77, 78] has focused on two different regimes, (1) strong coupling to
the leads without the Coulomb interaction U , and (2) weak coupling to the
leads and including the Coulomb interaction U . With words borrowed from
Ref. [78] the motivation for studying the FAB model using the DMRG is that
“The crossover between these two regimes is an interesting and challenging
issue, because a formalism that captures both coherence and correlations on
equal footing is needed”. The DMRG approach to transport is a good can-
didate for such a method, and it is the goal of this work to provide a unified
DMRG framework for studying both these regimes of the FAB model.

4.1.2 Tight-binding Hamiltonian

In order to apply the DMRG to the FAB model a discretized version of
the leads must be formulated. The simplest choice is to model the leads
as one-dimensional semi-infinite tight-binding chains, that are discretized
appropriately. With this choice and denoting the hopping matrix element
between the resonant level and the leads by tL/R,σ, the Hamiltonian reads
H = HL +HR +HC +HD +HB

HL,R = −
∞∑

n=1∈{L,R}

∑

σ

D

2

(

c†nσcn−1σ + c†n−1σcnσ

)

, (4.4a)

HC = −
∑

1∈{L,R}

∑

σ

(

tL/R,σc
†
1σdσ + h.c.

)

, (4.4b)

HD =
∑

σ

(εd − σB cosφ) d†σdσ + Und,↑nd,↓, (4.4c)

HB = −B sinφ
(

d†↑d↓ + d†↓d↑

)

, (4.4d)

where D is the band width of the tight-binding chain representation of the
leads.

In order to link different approaches to the model a connection to the
effective broadening parameter due to the leads, ΓL/R,σ, must be established.
In this particular case it is

ΓL/R,σ(ε) = −2 Im
[

|tL/R,σ|2gr
L/R,σ(1, 1, ε)

]

(4.5)

where gr
L/R,σ(1, 1, ε) is the surface component of the retarded Greens func-

tion of the semi-infinite left (L) or right (R) chain. The surface of the
tight-binding chain is the first site, and the Greens function reads [81]

gr
L/R,σ(1, 1, z) = 2

z −
√
z2 −D2

D2
, (4.6)

where z = ε + iη is complex and thus the imaginary part of the Greens
function is finite only inside the band between ±D, and is proportional to
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the semi-elliptic density of states. In Chap. 4.1.3 we discuss the implemen-
tation of the polarization, and explain that half filled leads can be used,
corresponding to ε = 0. Thus the correspondence between the broadening
ΓL/R,σ and the hopping matrix element tL/R,σ connecting the dot and the
leads is

ΓL/R,σ =
4

D
|tL/R,σ|2, (4.7)

and inserting the band width of the tight-binding chain in terms of the
hopping matrix element, D = 2t, finally

ΓL/R,σ =
2|tL/R,σ |2

t
(4.8a)

⇒ tL/R,σ =

√

ΓL/R,σt

2
. (4.8b)

This relation links the parameters of the different methods used to calculate
the conductance of the FAB model, making rigorous comparisons of the
results of the different methods possible. In this work the parameter t = 1
sets the scale for all other parameters.

4.1.3 Modeling the polarization

There is a certain freedom of choice in the modeling of the polarization.
Although the polarization is a property of the leads it can be modeled by
spin and polarization dependent hopping matrix elements connecting the
dot to the leads [78].

Full polarization of the leads is avoided for several reasons. Most promi-
nently full polarization decouples one spin species in a lead completely in
the sense that the hopping matrix element between the lead and the reso-
nant level is zero for all angles. Dealing with decoupled Hilbert spaces is
undesired as it creates numerical problems such as ill conditioned matrices,
making the numerical solution of the resolvent equations hard.

Furthermore there are single points where the model itself is ill-defined
for full polarization. At the angles φ = 0 and φ = π the spin-flip process of
the dot is inactive due to the prefactor sinφ. Furthermore due to the full
polarization also the hopping matrix element for the minority spin connect-
ing the lead and the dot is zero. Thus the minority spin level is completely
decoupled, and hence has a constant occupation. The occupation of the ma-
jority spin level, however, depends on the occupation of the minority spin
level through the Coulomb repulsion term Und,↑nd,↓, such that the proper-
ties of the model for these specific angles depend on the initial conditions of
the occupation of the minority spin level.

It should be noted that the qualitative behavior for (large) partial and
full polarization are similar except for the problem of the ill-defined points
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described above. It is, however, clear that a decreased polarization in the
leads tends to wash out the spin dependence in the model, and in the limit
of unpolarized leads all spin characteristics are lost.

There are different approaches to modeling the polarization of the leads,
from which we have chosen the simplest one to implement in the DMRG
setup. Rather than using spin-dependent filling in the leads we use half filled
leads for both spin species, and model the polarization by modifying the
hopping matrix elements connecting the leads and transport region. This is
indicated in Fig. 4.2, where we show the DMRG setup using the momentum-
space representation of the leads. This choice for the polarization simplifies
the DMRG setup significantly as identical discretizations can be used for the
two spin species in each lead, such that the spin species are again treated
equally, apart from the polarization dependent hopping matrix elements t′σ.
With the tight-binding description of the leads the Hamiltonian representing
the leads HL/R and the coupling of the dot to the leads HC are given by

HL/R = −
∞∑

n=2∈{L,R}

∑

σ

t
(

c†nσcn−1σ + c†n−1σcnσ

)

, (4.9a)

HC = −
∑

1∈{L,R}

∑

σ

t0L/R

√

1

2

(
1 + σPL/R

) (

c†1σdσ + h.c.
)

, (4.9b)

where the leads are modeled as unpolarized and half filled, and Hamiltoni-
ans of the dot HD and interaction with the magnetic field HB are given in
Eqs. (4.4). The polarization is modeled by different bandwidths (or densi-
ties of states at the Fermi edge) of the spin species in the leads, through
polarization dependent hopping matrix elements

tL/R,σ = t0L/R

√

1

2

(
1 + σPL/R

)
, (4.10)

where σ = 1(−1) for spin ↑ (↓) and PL/R ∈ [−1, 1] is the polarization in
percent of the left (L) and right (R) lead such that P = ±1 corresponds
to full spin up/down polarization and P = 0 corresponds to unpolarized

leads, and where t0L/R =
√

Γ0
L/R/2 is the ‘bare’ hopping matrix element

at the Fermi edge. Notice that t = D/2 = 1 has been chosen to derive the
expression and this sets the scale for all other parameters. In all calculations
presented we use identical polarization of the two leads, PL = PR = P , such
that the coupling to the left and right leads are identical.

4.1.4 DMRG setup and complications

In the DMRG calculations for spinless models presented in Chap. 3 the
leads were always fully polarized in the sense that only a single spin species
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was present. By contrast the FAB model utilizes a spinful and (partially)
polarized representation of the leads, such that the two spin species are
formally no longer equivalent.

Resonant level with bare energy ǫd

Real-space sites

Left Lead Right Lead

tktk t
′
↑t

′
↑

t
′
↓t

′
↓

U

t
′
σ = t

0
√

1+σP
2

Figure 4.2: Sketch of the DMRG setup for the ferromagnetic Anderson model with a
~B-field. Notice the implementation of the polarization through the hopping matrix
elements, where t′σ = tL/R,σ, and the onsite Coulomb interaction U indicated in the
figure. In the DMRG evaluation a single lead mapping is used in combination with
a momentum-space representation of the single tight-binding lead. tk indicates a
discretization dependent hopping to all states in the momentum-space, see also
Chap. 2.3.4.

There are a number of technicalities involved in performing DMRG cal-
culations for this model compared to the spinless models considered in pre-
vious chapters. Usual DMRG implementations decompose the Hilbert space
into subspaces according to quantum numbers, hence decomposing the full
Hilbert space into smaller subspaces. The decomposition of the Hilbert
space increases the performance of DMRG as it allows to search the solution
within the relevant subspaces of the full Hilbert space, effectively neglecting
states with different quantum numbers than desired when calculating the
target state(s). Contrary to the spinless models and spin-conserving mod-
els, the FAB model breaks spin conservation which generally leads to larger
Hamiltonian subspaces and decreased performance.

From initial attempts to use the real-space setup evaluating the Kubo
formula for conductance directly it became clear that this approach is in-
sufficient as the resolvent equations require a high degree of precision in
order to give accurate results. Also, initial attempts to use the momentum-
space setup failed as the DMRG did not converge properly in the attempt
to evaluate the Kubo formula for conductance. It is a known fact that the
DMRG performs best for small site bases, and the spinful site basis is twice
the size of the spinless, perhaps being part of the explanation for the poor
convergence in the DMRG calculations.
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Although the Kubo setup turned out to be unfeasible for the FAB model
we were able to calculate the conductance using a different approach: The
FAB model is a single impurity model, and hence falls in the category of ‘pro-
portional coupling’ models. Thus the linear conductance can be calculated
from the spectral function using the Meir-Wingreen formula [27], as reviewed
in Chap. 2.5.4. The rationale for doing so is purely technical: The spectral
function has turned out to have a better finite size scaling, and further can
be evaluated within a single lead setup, as discussed in Chap. 2.3.5. This
in turn provides smaller superblocks for the DMRG and hence improves
performance and accuracy. Using the momentum-space representation of
the leads, together with the single lead mapping we were therefore able to
perform accurate calculations of the zero frequency spectral function for the
FAB model, and hence evaluate the conductance via the Meir-Wingreen for-
mula. Notice that the momentum-space representation of the leads uses a
linearization of the energy band around the Fermi edge, which is equivalent
to the wide-band limit used in Refs. [77, 78].

Spin resolved conductance

In order to obtain the conductance from the spectral function we make
use of the Meir-Wingreen formula [27]. Using DMRG we evaluate the two
spin components of the full spectral function in different calculations, and
therefore need to recombine the spin resolved spectral functions into a total
conductance,

g =
∑

σ

gσ. (4.11)

Using identical hopping to the left and right leads, tL,σ = tR,σ = t′σ, or cor-
respondingly identical polarization of the left and right leads, and utilizing
additionally Eq. (2.68) the conductance of the FAB model is calculated as

g(εd, φ) =
e2

h

(

|t′↑|2A↑(εd, φ, ω = 0) + |t′↓|2A↓(εd, φ, ω = 0)
)

, (4.12)

where the polarization enters through the hopping matrix elements as t′σ =

t0
√

1
2(1 + σP ), and where the polarization is identical in the two leads,

P = PL = PR as mentioned above. In parts of this work we keep the bare
level resonant, εd = 0, and focus on the dependence of the angle φ. For
completeness we present also calculations considering the effect of varying
εd.

4.1.5 Analytic results

A generalization of the results in [77, 78] to finite polarization of the leads
was provided by Jonas N. Pedersen. Specifically a Greens functions result
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in the non-interacting limit and a perturbative approach for the cotunneling
regime, B ≫ Γ, where the level is significantly split by the magnetic field. In
this section we reproduce these results, and later we compare with results
obtained using the DMRG setup. These results are derived in the wide-
band limit for the density of states, where the real part of the self-energy is
zero, which is compliant with the linearized cosine-band used in the DMRG
approach.

Firstly the Greens function result for the conductance in the non-
interacting limit is

gGF =
e2

h
Re [Tr [GaΓRGrΓL]] , (4.13)

where using the notation from the previous sections the Greens function and
broadening matrices are

Gr/a =
[[

G
r/a
0

]−1 ± i

2

(
ΓL + ΓR

)]−1
, (4.14a)

[
G

r/a
0

]−1
=

(
εd −B 0

0 εd +B

)

, (4.14b)

ΓL/R =
ΓL/R

2

(
1 + P cosφ P sinφ
P sinφ 1 − P cosφ

)

. (4.14c)

Notice that this description uses a diagonal basis for the dot such that the
Greens function of the isolated dot G0 is diagonal whereas the coupling
matrices ΓL/R are non-diagonal.

The Greens function result is exact, and since the non-interacting limit
is not a special case where the DMRG performs better a comparison of the
two provides a rigorous benchmark for the DMRG setup, in particular for
the finite size effects.

Using again identical polarizations in the two leads, PL = PR = P , the
cotunneling result, valid for B ≫ Γ, is

gCOT =
e2

h

Γ0
LΓ0

R

4

(

(1 + P )2
[cos2(φ/2)

εd −B
+

sin2(φ/2)

εd +B + U

]2

+2(1 − P 2)
[− sin(φ/2) cos(φ/2)

εd −B
+

sin(φ/2) cos(φ/2)

εd +B + U

]2

+(1 − P )2
[sin2(φ/2)

εd −B
+

cos2(φ/2)

εd +B + U

]2)

, (4.15)

where Γ0
L/R are the bare coupling parameters. In the limit of full polarization

(P = 1) Eq. (4.15) reduces to the results given in Refs. [77, 78].
In Chap. 4.1.6 we use the Greens function expression to verify the ac-

curacy of the DMRG setup in the non-interacting limit, and in Chap. 4.1.7
compare results obtained from the DMRG setup with the cotunneling result
for the interacting case.
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Figure 4.3: Greens function (‘GF’) and DMRG (‘PH, U’) results for the conductance
versus angle φ for the FAB model with P = 0.8, t′0 = 0.5, εd = 0, and B = 1, and
using a particle-hole-symmetric interaction. In the cotunneling limit this model
maps onto the non-interacting model with renormalized magnetic field strength B̃ =
B + U

2
. The discrepancy is attributed to not being completely in the cotunneling

limit.

Particle-hole symmetry in the cotunneling limit

While attempting DMRG calculations on the FAB model it was realized that
particle-hole symmetry plays a peculiar role for this model in the cotunneling
limit B ≫ Γ. In order to illustrate this we use for simplicity the fully
polarized result (P = 1) for the cotunneling conductance in Eq. (4.15),

gCOT =
e2

h
Γ0

LΓ0
R

[
cos2(φ/2)

εd −B
+

sin2(φ/2)

εd +B + U

]2

. (4.16)

The effect of particle-hole symmetry is a compensating potential for each
level on the dot compared to the non-particle-hole-symmetric interaction,

U

(

n↑ −
1

2

)(

n↓ −
1

2

)

= Un↑n↓ −
U

2
(n↑ + n↓) +

U

4
, (4.17)

such that, apart from a constant that is neglected, the difference to the non-
particle-hole-symmetric interaction is the local compensating potential −U

2
for each spin level on the dot, or correspondingly a renormalization of the
bare energy level εd for the dot. Inserting εd → εd − U

2 in the cotunneling
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expression Eq. (4.16) yields

gCOT =
e2

h
Γ0

LΓ0
R

[

cos2(φ/2)

εd − U
2 −B

+
sin2(φ/2)

εd + U
2 +B

]2

, (4.18)

which is the non-interacting result with a renormalized magnetic field B̃ =
B+ U

2 . Comparing with the more general and more complicated expression
for partial polarization Eq. (4.15) it is clear that the conclusion also holds
in this case.

Hence the effect of a particle-hole-symmetric interaction in the cotun-
neling limit of the FAB model is to renormalize the magnetic field. The
conductance in this case thus stays symmetric around φ = π

2 , as may be
seen from Eq. (4.16) with U = 0 and as will be discussed in Chap. 4.1.6.

This result was found numerically as well, as shown in Fig. 4.3 for differ-
ent strengths of the Coulomb interaction. The figure shows DMRG calcu-
lations of the conductance using a particle-hole-symmetric interaction, and
Greens function calculations with a renormalized strength of the magnetic
field, B̃ = B + U

2 . The two data sets agree reasonably, the disagreement
attributed mainly to not being completely in the cotunneling regime, but
we have not investigated this issue in further detail.

4.1.6 Results

Using the momentum-space representation of the leads in the DMRG setup
we have calculated the spectral function for the FAB model, and using the
Meir-Wingreen formula in Eq. (4.12) evaluated the conductance of the FAB
model. We have varied the angle φ between the magnetic field and the
polarization direction, for different values of the magnetic field strength B,
the onsite Coulomb interaction strength U , and the bare energy level εd.

As can be seen from the Hamiltonian in Eq. (4.4) the model is symmetric
around φ = π since cos(2π− φ) = cosφ and sin(2π− φ) = − sinφ such that
only the spin-flip term acquires an insignificant phase. Therefore we confine
our studies to angles in the interval φ ∈ [0, π], and the interval φ ∈ [π, 2π]
is found by reflecting the results given here around φ = π.

In order to determine the discretization used for the leads exact diagonal-
ization calculations for the conductance have been performed, and compared
to the Greens function results in the non-interacting limit, Eq. (4.13). By
virtue of the exact diagonalization the only error present in this approach is
the error due to the finite size of the leads. The results are shown in Fig. 4.4
for two different magnetic field strengths B, and a total of 55 sites were
used in the single lead setup evaluation of the spectral function, 35 logarith-
mically and 20 linearly scaled sites. The figure shows excellent agreement
between the exact diagonalization and the Greens function results, such that
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Figure 4.4: Comparison of exact diagonalization (‘ED’) and Greens function (‘GF’)
results for the non-interacting FAB model with parameters P = 0.8, t0L/R = 0.5,
εd = 0, and for two different magnitudes of the magnetic field. The agreement is
excellent, demonstrating the capability of the discretization scheme to handle the
FAB model. The exact diagonalization calculation was performed with 55 sites in
a single lead setup, corresponding to 35 logarithmically and 20 linearly scaled sites.
Notice the different g-scales.

the modeling of the leads is sufficient for resolving the FAB model, although
upon closer inspection there are minor finite size deviations.

Having benchmarked the DMRG setup in the known limit of U = 0 we
turn to the interesting regime of finite interactions. In Figs. 4.5 and 4.6
we show the results of the DMRG calculations on the FAB model, keeping
the bare level resonant, εd = 0, and varying the strength of the magnetic
field and the interaction. The calculations presented in each figure were
performed keeping the strength of the magnetic field B fixed and varying
the interaction strength U and the angle φ, where the specific parameter
values are given in the plots.

In Fig. 4.7 we show calculations having the bare level off-resonance,
εd 6= 0, which could be realized by applying a gate potential to the transport
level. The strength of the magnetic field was kept fixed, B = 1, while the
interaction strengths used were U = 0 and U = 2.

All the DMRG calculations presented in this chapter were performed
using 55 sites in the single lead, corresponding to 35 sites scaled logarith-
mically and 20 sites scaled linearly around the Fermi edge. We keep up to
m = 600 states per block in the DMRG truncation, and typical target space
dimensions are in the range 750.000− 900.000 states. To each set of DMRG
results in the figures is fitted a spline as a guide to the eye.

In the following we consider the effect of various parameters on the be-
havior of the model. In some limits simple arguments suffice to explain the
behavior and also certain trends can be explained.
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Figure 4.5: Greens function (‘GF’) and DMRG (‘U’) results for the conductance
versus angle φ for the FAB model with P = 0.8, t′0 = 0.5, εd = 0, and B = 0.5.
To each set of DMRG results is fitted a spline as a guide to the eye. The Greens
function result is exact for U = 0, and the DMRG results for U = 0 are virtually
identical to the Greens function results, demonstrating the accuracy of the setup.

Magnetic field

Applying a magnetic field splits the (otherwise) degenerate resonant level
εd = 0 on the dot, and increasing the magnitude of the magnetic field
naturally increases this splitting. Thus, at small angles and for εd = 0, the
increasing magnetic field pushes the levels further away from the Fermi edge
where the transport takes place and lowers the conductance of the system.
In Figs. 4.5 and 4.6 this trend is most easily observed by comparing the
values of the conductance at φ = 0. For B = 0.5 (Fig. 4.5) this value is
∼ 0.45 whereas for B = 2 (Fig. 4.6(b)) it is reduced by almost a factor of
10 to ∼ 0.045 in units of e2/h. In the cotunneling limit, Eq. (4.15), the
dependence on the strength of the magnetic field is seen to be g ∼ 1/B2.

Noninteracting limit

In the non-interacting limit the model exhibits single particle behavior. Con-
sider the case where the bare level is resonant, εd = 0. Starting with φ = 0
essentially only a single level in the dot takes part in the transport due to
the collinearity of the polarization of the leads and the spin basis on the dot
(sinφ = 0). Hence the two paths through the dot are very different in the
sense that the path going through the majority spin level has high probabil-
ity, while the path going through the minority spin level is suppressed due
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Figure 4.6: Greens function (‘GF’) and DMRG (‘U’) results for the conductance
versus angle φ for the FAB model with P = 0.8, t′0 = 0.5, εd = 0, and B = 1 and
B = 2. To each set of DMRG results is fitted a spline as a guide to the eye. The
Greens function result is exact for U = 0, and the DMRG results for U = 0 are
virtually identical to the Greens function results, demonstrating the accuracy of
the setup.
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to the polarization.

As the angle φ increases the two paths through the dot become more
and more equal since the dot states come closer to the Fermi edge and both
levels partake in the transport since the spin-flip is activated. The strong dip
in the conductance at the point φ = π/2 has been interpreted as destructive
interference between the paths [78], which at this point are equally probable
since the level splitting at this point is zero, cosφ = 0 for φ = π/2, and
the spin-flip rate is maximal, sinφ = 1. These features are clearly visible
in the cotunneling limit, Eq. (4.15), where the two terms cancel (partially)
depending on φ.

In Chap. 3 it was found for the resonant level models that the lineshape
of the resonances was symmetric with respect to the gate potential, such
that the relevant quantity for the linear response transport is the distance
between the level through which the transport takes place and the Fermi
energy in the leads, and whether the level is below or above is insignificant.
This in turn explains the symmetry around φ = π/2 in the non-interacting
case, as increasing the angle above π/2 reverses the roles of up and down
spins on the dot since cos(π − φ) = − cosφ and sin(π − φ) = sinφ.

Finite interaction

It is apparent from the DMRG results shown in Fig. 4.5 and 4.6 that for
εd = 0 the conductance at φ = 0 is nearly independent of the interaction
on the dot. At this particular point the minority spin channel is essentially
closed by the polarization since the spin-flip on the dot is inactive (sinφ = 0
for φ = 0), and thus this level remains empty since the spin basis on the
dot is aligned with the direction of polarization. Hence only the majority
spin level takes part in the transport while the minority spin level remains
unoccupied, making the transport independent of the interaction.

The suppression of transport at φ = π for strong interaction (large U)
can also be understood. At this angle the role of ↑ and ↓ on the dot are
reversed compared to φ = 0, such that the minority spin site becomes filled
and transport through the majority spin is suppressed by U . Hence the
transport is essentially given by the minority spin in the leads, and thus
suppressed by the polarization. In previous work using full polarization [78]
the conductance indeed goes to zero in the limit of large U , as also apparent
from the cotunneling result in Eq. (4.15) using P = 1.

In the large U limit the FAB model acts effectively as a spin valve; by
tuning the angle of the magnetic field from φ = 0 to φ = π the conductance
is changed from a large value to a very small value, illustrating which spin
is allowed through the dot. This is similar to a valve since one can open and
close the transport for the spin-species by varying φ.
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Figure 4.7: Effect of varying the bare energy level εd on the conductance in both
the non-interacting and interacting cases. A comparison of the two data sets is
given, showing that the interacting case for some values of εd maps onto the non-
interacting case with renormalized εd.
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Bare energy level

So far we have kept the bare energy level resonant, εd = 0. To investigate
the dependence on the bare energy level εd we have performed DMRG and
exact diagonalization calculations varying this parameter. In Fig. 4.7 we
present DMRG data for the interacting case with parameters B = 1 and
U = 2, and exact diagonalization calculations for the non-interacting case
with B = 1.

Considering initially the non-interacting case, Fig. 4.7(a), the effect of a
finite εd is to put the bare level off-resonance, which could be realized by
use of a gate potential. Thus the splitting by the magnetic field and the
broadening by the leads have to cover the distance to the Fermi edge in
order for transport to take place. Consider for example the non-interacting
cases of εd = ±2, as these are reflections of each other around φ = π/2.
Starting with εd = 2 for φ = 0 the conductance is large since the majority
spin level is at ε = 1 and the minority spin level is at ε = 3. Thus the
transport is mainly through the majority spin level and hence supported
by the polarization. At φ = π the Zeeman splitting is opposite such that
the transport is mainly through the minority spin level, while the majority
spin level is far away from the Fermi edge, and the cross-over from φ = 0 to
φ = π is gradual. In the case of εd = −2 the dependence on φ is reversed
such that at φ = 0 the transport is mainly through the minority level, while
at φ = π it is mainly through the majority spin level.

Focusing on the difference between the case of εd = 0 and εd = 2 at φ = 0
in the interacting case, Fig. 4.7(b), we can explain the deviations between
the results; in the case of εd = 0 the two spin levels are symmetrically below
and above the Fermi edge, and therefore both levels partake in the transport,
modulus the given polarization. This is not the case for εd = 2, where only
one level partakes, and thus the difference between the results in these two
limits is attributed the transport through the minority spin level in the case
of εd = 0.

Turning on the interaction, U = 2, and keeping the bare level resonant,
εd = 0, we rediscover the spin-valve behavior. Gating the bare energy level
off-resonance potentially changes this behavior significantly; tuning the level
above the Fermi edge, εd = 2, does not change this behavior qualitatively,
since the transport through the minority level is in any case suppressed by
the polarization. By contrast tuning the level sufficiently below the Fermi
edge, e.g. εd = −2 and εd = −4, reverses the role of the spin-species such
that the transport is also changed. The results presented in Fig. 4.7(b)
qualitatively follow results presented in Ref. [78].

It turns out that for some combinations of the interaction U and the bare
energy level εd the conductance maps onto the non-interacting limit with
renormalized bare energy level εd. This is shown numerically in two different
cases in Fig. 4.7(c), where the comparison between exact diagonalization for
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the non-interacting case (U = 0) and DMRG calculations for the interacting
case (U = 2) shows perfect agreement.

Consider the non-interacting case of εd = −2 and keep for simplicity
φ = 0; the splitting of the bare level by the magnetic field with B = 1 gives
the spin levels ε↑ = −3 and ε↓ = −1, such that the transport is mainly
through the spin down level. Similarly the interacting case of εd = −4 and
U = 2 gives the spin levels ε↑ = −5 and ε↓ = −3. Since the spin up level
is far below the Fermi edge, and hence filled, the transport is through the
spin down level, and hence subject to the Coulomb repulsion. This gives an
effective spin down level at ε = −1, which is essentially the same situation
as the non-interacting case above.

Thus in general the interacting case for εd < −B maps onto the non-
interacting case with ε̃d = εd + U , while the interacting case for εd > B
maps onto the non-interacting case with the same bare energy level ε̃d = εd,
in agreement with Fig. 4.7(c).

4.1.7 Comparison to cotunneling results

A side goal of the DMRG approach to the FAB model was a comparison of
the results obtained with other approaches to the same model. Specifically
comparing with the cotunneling approach of Pedersen et al. [78] in the limit
where this approach is valid – i.e., for large magnetic fields B ≫ Γ, where
the resonant level is split significantly.

The cotunneling results in Eq. (4.15) are obtained as perturbation theory
in the coupling Γ, assuming full occupation of one level on the dot. Therefore
the cotunneling results are valid in the limit of a large magnetic field B ≫
Γ such that the broadening by the leads is small. Thus we compare the
cotunneling and the DMRG results for the magnetic field-strengths B = 1
and B = 2, and expect the cotunneling results to deviate from the DMRG
results in the former case since this is not completely in the cotunneling
limit.

The comparisons are shown in Figs. 4.8. As expected the cotunneling
result for B = 1 deviates more significantly from the DMRG results than
for the B = 2 case, particularly in the high conductance regions. Since
we have benchmarked the DMRG against exact diagonalization in the non-
interacting limit and found excellent agreement the discrepancy between the
cotunneling and DMRG results is attributed to not being completely in the
cotunneling regime, such that the approximation inherent in the cotunneling
result is not fully justified. This demonstrates the strength of the DMRG
approach, that it applies to all parameter regimes equally well, and veri-
fies qualitatively the range of validity of the perturbative approach in the
cotunneling regime.
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Figure 4.8: DMRG (‘U’) and cotunneling (‘COT’) results for the conductance versus
angle φ for the FAB model with P = 0.8, t′0 = 0.5, εd = 0, and two values of the
magnetic field strength B = 1 and B = 2. The agreement is expected to be better
for larger magnetic fields as the cotunneling data relies on a large splitting of the
level, as is evident from the figure. The cotunneling result is given in Eq. (4.15).
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4.1.8 Conclusions

In this chapter we considered a spintronics model, the FAB model, consisting
of a single level subject to an external magnetic field, and coupled to spin-
polarized leads. The magnetic field is applied at an angle φ with respect to
the direction of polarization in the leads, such that the spin channels can be
opened and closed by varying this angle, and the model therefore exhibits
both coherence and correlation effects.

We presented the DMRG framework used in calculating the conductance
of this model. Compared to the setup used in Chap. 3 the complications
consist of a spinful basis, the modeling of spin-polarized leads, and the non-
conservation of spin on the dot. It turned out that a direct evaluation of
the Kubo formula for conductance was unfeasible, and we devised a differ-
ent approach to calculate the conductance; the momentum-space DMRG
setup was used to evaluate the spectral function for the transport level, and
the conductance was then calculated using the Meir-Wingreen formula in
Eq. (4.12).

In order to benchmark the DMRG calculation of the conductance we
used the Greens function result in Eq. (4.13), valid in the non-interacting
limit. Comparing the two approaches confirmed the high accuracy of the
DMRG method, and enabled the determination of the necessary lead size.

Using the DMRG scheme we presented results for the linear conduc-
tance g(φ) of the FAB model, varying the magnetic field strength B, the
onsite interaction U , and the bare energy level εd. The effects of B, U ,
and εd were discussed and it was demonstrated that using a particle-hole-
symmetric interaction in this model maps onto the non-interacting result
with a renormalized strength of the magnetic field.

Since the DMRG is non-perturbative and can handle strong correlations
the developed framework treats both the coherence and the correlation cor-
rectly. Thus the full parameter space can be targeted by this method, and we
presented initial results for the difficult regime where B ∼ Γ0. As an illustra-
tion we compared perturbative results in the cotunneling limit, Eq. (4.15),
to the DMRG results and found a fair agreement in the limit where the
perturbative approach is valid. For small magnetic fields the perturbative
approach is not expected to be accurate, and the DMRG results quantita-
tively confirm this.

4.1.9 Outlook

In this chapter we presented the DMRG framework and initial calculations
on the FAB model. However the model has a large parameter space that
we have not yet investigated. The goal of the project was to provide a
non-perturbative DMRG framework for treating the FAB model, and we
demonstrated the capability of the developed setup to do just that for the
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polarization used so far, P = 0.8.
In the future the parameter space of the model will be investigated in

more detail. It is for example still unknown how far the DMRG setup can
be pushed towards full polarization, and also the dependence on the bare
energy level εd, or the dependence on the bare hopping matrix element t0 of
the model have not yet been investigated completely. A regime where both
coherence and interaction effects are significant is found when Γ0 = 2[t0]2 ∼
B. To our knowledge this regime has not been treated in the literature so
far. We presented initial calculations in this regime but further studies are
needed to gain a full understanding of the model.

On a slightly longer time scale it would be interesting to expand the
model beyond the single resonant site. Depending on the actual choice of
extended transport region this may conflict with the Meir-Wingreen ap-
proach used in this work, complicating these calculations somewhat. This
is, however, not a principal limitation since the Kubo approach is valid but
currently unfeasible, such that more work is needed to make that approach
feasible.
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5.1 Summary

In this chapter we give a summary of the major outcome of this thesis.
We reviewed a new non-perturbative approach to transport in strongly cor-
related systems, using the density matrix renormalization group (DMRG)
method. In the following we sum up the main lines of the method (Chap. 2),
and the results for spinless (Chap. 3) and spinful (Chap. 4) models. The
method presented is widely applicable such that many possible extensions
of the project exist. For the models already considered there are open ends,
and we briefly discuss these, as well as possible extensions of this work.

5.1.1 DMRG implementations

In this thesis we presented a setup using the density matrix renormalization
group (DMRG) method to calculate transport through interacting nanos-
tructures in the linear source-drain voltage regime. The DMRG is a Hilbert
space decimation method, that seeks an optimally projected Hilbert space.
Hence a generic feature is that it deals with finite rather than infinite sys-
tems, such that some consideration must be made to apply it to a transport
setup. On the other hand the DMRG method is capable of handling strong
correlations rigorously, such that both correlation and coherence effects can
be studied within a unified framework. The developed method targets the
linear regime in applied source-drain voltage and uses the DMRG to evaluate
either the Kubo formula for conductance or the single particle Greens func-
tions, from which the conductance can be evaluated via the Meir-Wingreen
formula. The evaluations of the Kubo formula and the Greens functions
are approximation-free apart from the DMRG truncation error, which for
one-dimensional systems with short range interactions and hopping can be
made very small.

In this thesis two different representations of the leads have been pre-
sented, in real- and momentum-space respectively. It was demonstrated
that while the real-space leads are simpler to implement the momentum-
space leads provide a faster and more accurate setup. The reason for this
is the flexibility of the momentum-space leads to tailor the discretization
of the lead to the problem at hand. Since the real-space system couples
directly to the low-energy states in the momentum-space leads much lower
energy scales can be addressed, and no scaling of the boundaries is needed,
leading to an overall faster setup. By contrast a similar reduction of the
finite size level splitting in the real-space leads is numerically cumbersome
and eventually leads to instabilities.

The physics targeted in this thesis deals with the linear response regime
in the source-drain voltage. For this type of calculations an accurate dis-
cretization is necessary at the Fermi edge, where the transport takes place.
In the momentum-space representation of the leads we used a combined log-
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arithmic and linear discretization in order to reach the unitary limit for the
conductance on-resonance. We use the logarithmic discretization to cover a
large energy window, and switch to a linear discretization on the very low-
energy scale close to the Fermi edge. This discretization is beyond the capa-
bility of for example NRG calculations, and we emphasize that the unitary
limit is only reached in this setup when including the linear discretization.

When using the DMRG method in a transport setup we face two different
sources of errors; the error committed by describing transport on a finite
system (the finite size error), and the error committed when using DMRG to
truncate the Hilbert space. We presented benchmark schemes for both types
of errors in the non-interacting limit, exact diagonalization for the truncation
error, and Greens function calculations for the finite size error, providing in
total a rigorous test for the developed DMRG approach. Furthermore the
exact diagonalization scheme provides a fast approach to determining the
free parameters of the model, for instance for the discretization of the leads.

The momentum-space representation of the leads gives full flexibility
for the choice of discretization such that more sophisticated discretization
schemes can be used. We discussed the evaluation of the frequency re-
solved single particle Greens function, where a fine-grained discretization
is needed at two energies, such that NRG type logarithmic discretizations
are insufficient. However, making full use of this flexibility is left for future
applications of the method.

5.1.2 Interacting resonant 7 site chain

The first physical model considered in Chap. 3.1 of this thesis, was an in-
teracting resonant 7 site chain, including repulsive interaction mainly inside
the chain. Using the real-space representation for the leads we presented
calculations of the conductance versus gate potential, studying the effects
of the interaction inside the chain. We presented the parameter determi-
nation for the real-space setup, and showed that for weak interaction the
widths of the resonances in the spectrum remain largely unchanged com-
pared to the non-interacting limit, whereas the positions of the resonances
were found to be renormalized by the interaction, such that this microscopic
model exhibits Coulomb blockade behavior.

For the strongly interacting case the picture is different. The positions
of the resonances are still renormalized, and additionally the widths are
significantly reduced. Thus the model not only displays Coulomb block-
ade behavior, but also shows a significant sharpening of the resonances in
the strongly interacting limit. This illustrates that the transition to the
insulating regime for V > 2 in the infinite system limit is not through a
reduction of the conductance on-resonance, but rather through a reduction
of the resonance width.

For the strongly interacting limit we provided a simple picture for the
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renormalized positions of the resonances, the reduced lattice model. In this
model the electrons interact so strongly that the effect of one electron on the
others is to limit the available space, such that the electrons effectively move
freely on a lattice of a reduced size. Upon comparison with the DMRG data
this model was shown to explain the resonance positions with reasonable
accuracy.

Finally to illustrate the improved energy resolution we presented recal-
culations of the 7 site chain using the momentum-space representation of
the leads. Whereas the real-space setup failed to reach the unitary limit on-
resonance the calculations using the momentum-space reached it perfectly,
even for the sharp outermost resonances. The improved resolution of the
momentum-space calculations further made the extraction of the widths of
the resonances possible, such that quantitative statements could be made
for the trends seen from the real-space calculations.

5.1.3 Interacting resonant level models

The interacting resonant level models considered in Chap. 3.2 are seem-
ingly simple models consisting of short interacting resonant chains, with
an additional density-density interaction to the neighboring sites in each
lead. Whereas we studied the effects of interaction inside the resonant chain
considered in Chap. 3.1, the interacting resonant level models have the in-
teraction V inside the chain, and γV on the contact links, and we focused
on the effect of the interaction on the contact links.

The interacting resonant level model (IRLM) considered in Chap. 3.2.1
is the simplest possible model with just a single resonant level. It is useful
for benchmarking new methods due to its simplicity, and we mentioned the
recent approaches to this model, the scattering Bethe ansatz [64, 65] and
perturbation theory in the coupling [74].

The conductance of the IRLM in the non-interacting limit is a height
normalized Lorentzian of half width at half maximum w = 2t′2, where t′ =
tL/R is the hopping matrix element coupling the resonant level to each lead.
We studied the dependence of the interaction on the resonance width for the
IRLM in the limit of weak coupling to the leads, using the momentum-space
representation for the leads.

Interestingly the widths of the resonances show a strong and non-
monotonic dependence as the strength of the repulsive interaction increases
from the non-interacting limit. The models considered are in the weak cou-
pling limit in the sense that the hopping matrix element connecting the
resonant level to the leads is small, typically t′ = tL/R = 0.01. Starting from
the non-interacting limit and increasing the interaction strength to γV = 1
the width of the resonance increases by an order of magnitude. Increasing
further the strength of the interaction the width of the resonance is again
reduced, and for γV = 25 the width is reduced by an order of magnitude
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compared to the non-interacting limit.
It was suggested in a recent paper by Borda et al. [74] that this non-

monotonic dependence was linked to a density depletion of the first sites
in the leads. This hypothesis was tested in the linear source-drain voltage
regime, and no significant signatures were found in the density profile of
either the resonant level itself or the neighboring lead sites. In the regime
of interaction strengths where the large and non-monotonic change in the
resonance widths occur there is a slight charging of the lead sites, rather than
a depletion, therefore it appears that the suggested mechanism is incorrect,
at least in the parameter regime considered here. For very large interaction
strengths the resonant level is depleted, such that there is a correlation
between the densities and the transport but it remains an open question
what the governing mechanism is [75].

In Chap. 3.1 it was shown that strong repulsive interaction inside the
transport region leads to a reduced resonance width, whereas for the single
site model considered in Chap. 3.2.1 repulsive interaction on the contact links
leads to an increased resonance width. To investigate if the enhancement
of the off-resonance transport is a special feature of the IRLM – i.e., to
compare the strengths of these two oppositely directed effects, we considered
in Chap. 3.2.2 transport through short resonant chains including a leak of the
interaction onto the contact links. These resonant chains thus feature two
interaction strengths, V inside the chain, and the leaking of this interaction
onto the contact links γV , such that γ = 0 corresponds to no interaction,
and γ = 1 corresponds to the full interaction on the contact links.

The results presented for the short resonant chains show that the en-
hancement of the off-resonance transport by the interaction on the contact
links is stronger than the corresponding suppression by the interaction in-
side the chain. Thus for a resonant 3 site chain with t′ = tL/R = 0.05,
interaction V = 2, and γ = 0 the resonance width for zero gate potential is
reduced by 30%, while for γ = 1 it is increased by 400%, both compared to
the completely non-interacting case V = 0. Since the leaking interaction γV
is bounded in magnitude by the interaction inside the resonant chain the
non-monotonic behavior is not observed for small values of V . For larger
interaction strengths, V = 3 and V = 5, the non-monotonic behavior is
rediscovered for the short resonant chains.

The resonant 3 site chain has additionally a resonance located at finite
positive gate potential, and it was shown that this resonance displays a sim-
ilar enhancement of the off-resonance transport, although the enhancement
is less pronounced. The study of these resonances is complicated by the fact
that the position is renormalized by the interaction on the contact links,
and therefore has to be determined in addition to the resonance width.

Finally it was shown that the results remained unchanged when varying
the band cutoff. Thus the enhancement was demonstrated to be a stable
feature, supporting the conclusion that the off-resonance enhancement by
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contact interactions is a universal feature.

This conclusion challenges the division commonly used in transport cal-
culations between transport region and leads, where all interaction and cor-
relation effects are kept inside the transport region. The results presented
in this chapter demonstrate that care should be taken when making this
division, as even a slight leaking of the interaction into the contacts results
in significantly changed off-resonance transport properties.

5.1.4 The ferromagnetic Anderson model with an applied

magnetic field

In Chap. 4.1 we considered a spintronics model known as the ferromagnetic
Anderson model with an applied magnetic field ~B, abbreviated the FAB
model. The model consists of a spinful resonant level coupled to partially
spin-polarized leads, and with a magnetic field applied to the resonant level
at an angle φ with the direction of the polarization of the leads. The work
on the FAB model is part of an ongoing collaboration with Ph.D. student
Jonas N. Pedersen (Lund, Sweden) and Dr. Tomáš Novotný, (Prague, Czech
Republic).

Apart from being a spintronics model the FAB model also exhibits both
coherence and correlation effects, and in the general case both these effects
require a rigorous treatment. Previous work [77, 78] has targeted two dif-
ferent regimes, the non-interacting but strongly coupled, and the weakly
coupled but interacting regime. The aim of this work was to provide a uni-
form framework for treating all regimes of this model, and the method for
this is the developed DMRG setup.

In Chap. 4.1 a scheme for calculating the conductance of the FAB model
was presented. Specifically the modeling of the spinful and polarized leads
makes the setup different from the spinless models considered in Chap. 3.
Due to technical difficulties in the DMRG calculations a direct evaluation
of the Kubo formula was unfeasible, and the conductance was instead cal-
culated using a DMRG evaluation of the single particle Greens function in
combination with the Meir-Wingreen formula. This approach makes a map-
ping from the usual two lead setup onto a single lead setup possible, such
that the total lead size is effectively halved.

Comparing exact diagonalization calculations of the conductance with
Greens function results for different strengths of the magnetic field the
parameters of the lead were determined in Chap. 4.1.6. Using this lead
discretization and keeping the bare level resonant, εd = 0, while varying the
strength B of the magnetic field, and the onsite Coulomb interaction U , the
conductance of the FAB model versus the angle φ of the magnetic field was
calculated. The results presented were both in the cotunneling limit, and in
the interesting regime where correlations and coherence both are important.
It was shown that in the strongly interacting limit the FAB model behaves
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as a spin valve, where rotating the magnetic field from φ = 0 to φ = π
changes the spin species allowed through the transport region.

Also the effect of having the bare level off-resonance was considered.
This opens up the possibility of having transport through a single level only,
and in some cases the behavior of the interacting case is the same as the
behavior in the non-interacting limit with a renormalized bare energy level.

In the cotunneling limit, given by B ≫ Γ, where the bare resonant
level on the dot is split by a large magnetic field, perturbation theory in
the coupling applies. Perturbative results similar to the ones presented
in Ref. [78], but generalized to finite polarization in the leads, enabled a
comparison of the DMRG calculations and the perturbative approach, as
shown in Chap. 4.1.7. A fair agreement was found for large magnetic fields,
while smaller magnetic fields show significant deviations between the two
approaches. This demonstrates the range of validity of the cotunneling ap-
proach.

In conclusion Chap. 4.1 demonstrated that accurate conductances for
the FAB model can be calculated using the developed DMRG approach
via the Meir-Wingreen formula. It is left as future work to investigate the
parameter space of the model further, and perform rigorous comparisons
with other approaches to the FAB model.

5.2 Concluding remarks

This thesis represents the main lines of three years work. Large parts of the
work consisted in developing the method itself and the benchmarks for it.
We applied the method to a limited number of models, but demonstrated
the capability to capture interesting physics. Let us mention three specific
issues: (1) The results presented demonstrate Coulomb blockade from a
microscopic model, which is beyond the capability of for instance DFT based
calculations. (2) We have demonstrated a renormalization of the resonance
width by an interaction. (3) For the FAB model a correct description of the
coherence is essential, and it has been demonstrated that the method can
handle interference in the model. Thus in total we have demonstrated the
ability of the DMRG method to handle the important issues of correlation
and coherence within a transport setup.

A number of interesting problems can be addressed with the developed
method and it is the aim to make use of this in the future. Within the models
already targeted open questions still remain. Here we discuss some of the
open ends and the natural extensions of this work within the developed
framework.

The interacting resonant level model (IRLM) as we considered it in
Chap. 3.2 is a highly symmetric model, symmetric in hopping matrix el-
ements connecting leads and the resonant level, symmetric in the density-
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density interactions with the left and right leads, and also the extended
resonant chains considered in Chap. 3.2.2 were symmetric in this sense. It
would be relevant to investigate how sensitively the transport enhancement
of these models depends on this symmetry. Further it would be interesting to
study in more detail the impact of the Fermi velocity on the transport behav-
ior. Additionally the question of the mechanism behind the non-monotonic
transport enhancement remains open, and an effort will be devoted to find-
ing an explanation.

The calculations presented for the ferromagnetic Anderson model with
an applied magnetic field in Chap. 4.1 are limited to a small part of the
parameter space. As the DMRG approach to the model has been shown to
yield accurate results a more thorough investigation of the parameter space
would be interesting – for instance the effect of having the bare level εd off-
resonance with the Fermi edge in the leads, or the dependence on the bare
coupling Γ0. It is also an open question how far the method can be pushed
towards full polarization of the leads. Finally a more rigorous comparison
of the DMRG data with other approaches would be interesting, yielding
insight into limitations of the DMRG method as well as limitations of the
other methods.

The flexibility of the discretization scheme presented for the momentum-
space representation of the leads opens up new problems to be studied. One
example of this is the Kondo model in a magnetic field [82]. The magnetic
field splits the Kondo peak and a sharp asymmetric resonance is located at
a finite frequency ω ∼

∣
∣ ~B

∣
∣ [82]. For this model two energy-scales need to be

represented accurately in the calculation of the spectral function – energies
at the Fermi edge and energies close to the Kondo peak ∼

∣
∣ ~B

∣
∣. For moderate

to large magnetic fields this resonance is well away from the Fermi edge and
hence a doubly dense discretization is needed to resolve it. The flexibility
for studying this interesting limit of the model is provided by the DMRG
setup, whereas the NRG based methods are limited to a single logarithmic
discretization and hence do not produce reliable results for finite magnetic
fields. This limit of the split Kondo model has not been considered before
and a successful application of the DMRG method would be very interesting.



Appendix A

The density matrix

renormalization group

method

The density matrix renormalization group (DMRG) method is an iterative
Hilbert space decimation scheme using a superblock setup where the system
is joined with an environment. In this chapter we derive the state selection
mechanism, and review the two algorithms used in DMRG calculations. The
chapter is based mainly on the Springer Lecture Notes in Physics edited by
Peschel et al. [14], and the original articles by White [15, 16].

|i〉 |j〉

Figure A.1: General superblock setup as originally formulated by White [15, 16]
using two central sites. States |i〉 are system states and states |j〉 are environment
states.

A.1 Retained states

The idea of DMRG is to calculate an optimally projected Hilbert space
for the problem at hand. This is done using a superblock setup where the
system is joined with an environment. To illustrate the method we consider
an arbitrary superblock state |ψ〉. Using the notation in Fig. A.1, denoting
system states by |i〉 and environment states by |j〉, this state can be written
in product form1

|ψ〉 =
I∑

i=1

J∑

j=1

ψij |i〉 |j〉 , (A.1)

1The environment states |j〉 include the two central sites for simplicity.
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where
∑I

i=1 denotes summation over the complete basis of the system block,

and
∑J

j=1 denotes summation over the complete basis of the environment
block. The reduced density matrix (RDM) for the system block is obtained
by tracing out the environment degrees of freedom

ρii′ ≡
∑

j

ψ∗
i′jψij

=
∑

j

ψijψ
†
ji′ , (A.2)

or in matrix notation

ρ = ψψ†. (A.3)

For any system block operator A the quantum mechanical average is

〈
ψ

∣
∣A

∣
∣ψ

〉
=

∑

iji′j′

〈
j
∣
∣
〈
i
∣
∣A

∣
∣i′

〉∣
∣j′

〉
ψi′j′ψ

†
ji

=
∑

ii′

Aii′
∑

j

ψi′jψ
†
ji

=
∑

ii′

Aii′ρi′i

= TrρA. (A.4)

Normalizing ρ, Trρ = 1, and denoting its eigenstates by |uα〉 and the
eigenvalues by wα ≥ 0 we have

∑

αwα = 1. For any system operator A we
may write the trace in this eigenbasis

〈
ψ

∣
∣A

∣
∣ψ

〉
=

∑

α

wα 〈uα|A |uα〉 . (A.5)

The goal is to construct the best possible approximate state,
∣
∣ψ̄

〉
≈

∣
∣ψ

〉
, for the superblock using a given number of states. From Eq. (A.5)

it is clear that if one particular eigenstate has zero weight, wα = 0, no
error would be made by disregarding the corresponding state |uα〉 when
calculating quantum mechanical averages.

More formally the mathematical goal is to minimize

S =
∣
∣|ψ〉 −

∣
∣ψ̄

〉∣
∣2 , (A.6a)

∣
∣ψ̄

〉
=

∑

α,j

aα,j |uα〉 |j〉 , α = 1, . . . ,m < I. (A.6b)

by varying over all coefficients aα,j and choosing the best possible orthonor-
mal basis states uα,

〈
uα

∣
∣uα′

〉
= δαα′ .
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In order to map the problem of finding the best states and coefficients
onto a known form we use a change of basis

∣
∣ψ̄

〉
=

∑

α

|uα〉
∑

j

aα,j |j〉

≡
∑

α

aα |uα〉 |vα〉 , aα |vα〉 =
∑

j

aα,j |j〉 . (A.7)

Switching to matrix notation and usingm basis states in the approximate
state

∣
∣ψ̄

〉
, the error measure is

S =
∑

ij

Sij

=
∑

ij

(

ψij −
m∑

α=1

aαu
α
i v

α
j

)2
, (A.8)

a form known from linear algebra. The state vector of the superblock |ψ〉
is represented by the rectangular (possibly complex) matrix ψij defined in
Eq. (A.1), and we may write it in singular value decomposition,

ψ = UDV †, (A.9)

where U and D are I × I matrices and V is J × I, where I and J are the
number of states in the system and environment blocks respectively. U and
V are unitary and D is diagonal with positive elements. The connection
between U , V , and D can be demonstrated as follows:

ψψ† = UDV †V DU †

= UD2U † ⇒
U †ψψ†U = D2

= diag(σ2
1 , . . . , σ

2
I ), (A.10a)

ψ†ψ = V DU †UDV †

= V D2V † ⇒
V †ψ†ψV = D2

= diag(σ2
1 , . . . , σ

2
I ). (A.10b)

Hence the elements of D can be found as the square root of the eigenvalues
of ψψ† or ψ†ψ. The columns of U are the corresponding eigenvectors of ψψ†

while the columns of V are the corresponding eigenvectors of ψ†ψ.
Now we see how to minimize S in Eq. (A.8): for aα choose the m largest

values of σi, for uα choose the corresponding columns of U , and for vα choose
the corresponding columns of V . For a given m < I this will be the optimal
choice.
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From Eq. (A.10a) it is clear that the singular value decomposition is
equivalent to diagonalization of the reduced density matrix such that U is
the matrix of eigenvectors of ρ. Hence the best possible states to retain
are the m largest eigenvalue eigenstates of ρ, or equivalently the m most
probable eigenstates of ρ.

If the system is in a mixed state with probabilities Wk,

∣
∣ψ

〉
=

∑

k

Wk

∣
∣ψk

〉
, (A.11)

where Wk could be the Boltzmann distribution to simulate temperature,
or any other relevant distribution. Each state

∣
∣ψk

〉
can be written as in

Eq. (A.1), and the relevant error measure accordingly

S =
∑

k

Wk

∑

ij

(

ψk
ij −

m∑

α=1

ak
αu

α
i v

k,α
j

)2
. (A.12)

We seek a single set of optimal states, hence not allowing uα
i to depend on

k, while the environment states are allowed to change with k.

The reduced density matrix is

ρii′ =
∑

k

Wk

∑

j

ψk
ij(ψ

k)†ji′ , (A.13)

and a similar optimization procedure gives

U †ρU = diag(σ2
1 , · · · , σ2

I ), (A.14)

so that the optimal states again are the largest eigenvalue eigenstates of the
reduced density matrix, defined in Eq. (A.13).

In conclusion we have shown that the m < I optimal DMRG states
are the m largest eigenvalue eigenstates of the reduced density matrix as
properly defined in Eq. (A.2) and (A.13).

From the above derivation of the DMRG states it is obvious that the
spectrum of the reduced density matrix is linked to the success of the DMRG.
If the eigenvalues of ρ decay fast a limited number of states suffices, whereas
a slower decay indicate that a larger number of states should be kept to
attain the same accuracy. In fact one can use the sum of the truncated
eigenvalues as a guideline to the magnitude of the truncation error at each
step, but care should be taken since a DMRG calculation consists of very
many successive truncations.

It should be noted that the boundary conditions influence the spectrum
of the reduced density matrix and generally DMRG performs best for sys-
tems with hard-wall rather than periodic boundary conditions [14].
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A.2 Algorithms

To implement the idea of optimizing the basis algorithms are needed for
building up a system from a sufficiently small size and for improving the
description of a given size finite system. In this section we describe how the
superblock procedure is combined with the DMRG projection, leading to
the two important DMRG algorithms.

In order not to inflate the Hilbert space too much at each step the usual
way of adding degrees of freedom is to add one lattice site at a time when
building up the system from a small size. In principle not only lattice sites
but any other generic and sufficiently small building block of the Hilbert
space can be used. The key idea is to divide the system into 4 blocks, a
left or system block, two central single sites, and a right block, where the
central and right blocks constitute the environment, see also Fig. A.1.

There are two generically different algorithms, the infinite and the finite
system algorithms differing by the choice of the environment block.

Figure A.2: Schematic representation of the infinite lattice algorithm used to build
up the system in DMRG. When the system size becomes sufficiently large each step
involves a truncation to a smaller number of states.
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A.2.1 Infinite system algorithm

In the infinite system algorithm the system is enlarged by a single site at
each step in the algorithm. As environment block a simple choice is to use
two single sites joined with a spatial reflection of the system block, as seen
in Fig. A.2. This is however not crucial and in the momentum-space setup
presented in Chap. 2.2 another choice of environment block is used.

Enlarging both the system and environment block by a single site at
each step the superblock size grows by two sites. This has lead to the name
the infinite system algorithm since the superblock size is not fixed. The
algorithm can be formulated as

1. Form a superblock consisting of L sites, where L is small enough that
the target state(s) of the superblock Hamiltonian can be calculated
exactly.

2. Compute the target state(s) of the superblock Hamiltonian numeri-
cally.

3. From the target state(s) construct the reduced density matrix, defined
in Eq. (A.2), for the block consisting of the system block and the
leftmost central site.

4. Diagonalize the reduced density matrix and collect the desired number
of eigenvectors uα in the truncation matrix U .

5. Transform all system operators to the eigenbasis of the reduced density
matrix.

6. Form a superblock of size L+ 2 using the enlarged system and corre-
sponding environment blocks, and two single sites.

7. Repeat this procedure from step 2, enlarging the superblock size by
two sites at each iteration, until the desired superblock size has been
reached.

Using the infinite system algorithm a superblock of a desired size can
be built in a controlled manner, enlarging the size of the superblock in each
step of the algorithm.

A.2.2 Finite system algorithm

Once a superblock of the desired size has been built using the infinite lattice
algorithm the environment can be chosen differently. Keeping the size fixed
the point of division between the system and environment can be moved back
and forth through the superblock improving the accuracy of the description
at each sweep. This procedure is illustrated in Fig. A.3. Formally the
algorithm is
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Figure A.3: Schematic representation of the finite lattice algorithm in the DMRG.
The finite system algorithm keeps the size of the superblock fixed and shifts the
division between system and environment at each step.

1. Use the infinite system algorithm to build up a superblock of the de-
sired size L storing at each step representations of the left and right
blocks.

2. Carry out steps 3-5 in the infinite system algorithm, enlarging the
size of the system by a single site, and store the representation of the
enlarged system block.

3. Form a superblock of unchanged size using the enlarged system block,
two single sites and an environment block with one site less. The
environment block was found and stored during the build up of the
initial superblock using the infinite algorithm.

4. Repeat steps 2-3 until the end of the system is reached. This consti-
tutes the left to right phase in which the left block is enlarged.

5. Reverse the roles of system and environment and move the point of
division all the way through the superblock until the opposite end is
reached. This is the right to left phase, in which the right block is
enlarged.

6. Continue this sweeping until convergence is reached.

The left to right phase improves the description of the left block, while the
right to left phase improves the description of the right block.

In the sweeping process the role of the system and environment is
switched when reaching the end of the superblock. However, the sweep-
ing is not continued until the environment block is just a single site, rather
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it is stopped when the description of the environment block is exact using
the number of states kept in the DMRG truncation. For a spinless model
10 sites represented exactly corresponds to 1024 states, while for a spinful
model 5 sites represented exactly corresponds to 1024 states, illustrating the
different scaling of these two classes of models.

Extracting physical quantities can be done in various ways. Two possi-
bilities are to use the final step to readout values, or to look for a plateau
in the readout of the relevant physical quantity during the sweeping, and
take the value in the plateau. See also App. D for details about the data
extraction used in this work.

A.3 Further details

A large number of technical details should be taken into account when imple-
menting the DMRG efficiently. We will not attempt to provide such details
here, but refer to the literature, where a number of reviews and papers
discuss these issues. A good starting point is Ref. [14] and the references
therein, where wavefunction prediction, decomposition by quantum num-
bers, etc. are discussed. Also many reviews of the method exist, of which
we can mention Refs. [55, 56, 57, 58].
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Resolvent formulations

In this Appendix we derive in detail the resolvent expressions for the con-
ductance and the Greens functions evaluated using DMRG in the main text.

For the Kubo formula for conductance the setup is an interacting equi-
librium system with Hamiltonian H0 perturbed by the voltage, represented
by the Hamiltonian δH. Hence the interaction picture is well suited for this
setup, and we use the notation Ô for the interaction picture representation
of the Schrödinger operator O.

B.1 Linear response conductance

To derive the Kubo formula for conductance in the resolvent form used in
this thesis, we start from the general Kubo result for the particle current
derived in Chap. 2.4, taking ~ = 1

〈
Ĵ(t)

〉
=

〈
J
〉

0
− i

∫ t

−∞
dt′

〈
ψ0

∣
∣[Ĵ(t), δĤ(t′)]

∣
∣ψ0

〉
, (B.1)

where δĤ(t) = −eVSD(t)N̂(t) is the voltage perturbation, N = 1
2(NL−NR),

and
∣
∣ψ0

〉
is the ground state of the unperturbed Hamiltonian H0. The

particle current operator at the i’th link is

Ji = −i(t∗i c†i−1ci − ti c
†
i ci−1), (B.2)

such that the electric current is

I = −e
〈
J
〉
. (B.3)

Note that we derive the linear response result in the source drain voltage VSD

such that the ‘simple’ Hamiltonian H0 contains the full Coulomb interaction.
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Usually the equilibrium current is zero,
〈
J
〉

0
= 0, and a Fourier trans-

formation yields

〈
J(ω)

〉
= −i

∫ ∞

−∞
dt eiωt

∫ t

−∞
dt′

〈
ψ0

∣
∣[Ĵ(t), δĤ(t′)]

∣
∣ψ0

〉

= ie

∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′θ(t− t′)VSD(t′)

〈
ψ0

∣
∣
(
Ĵ(t)N̂ (t′) − N̂(t′)Ĵ(t)

)∣
∣ψ0

〉

= ie

∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′θ(t− t′)VSD(t′) (B.4)

〈
ψ0

∣
∣

(

eiH0tJe−iH0teiH0t′Ne−iH0t′

−eiH0t′Ne−iH0t′eiH0tJe−iH0t
)∣
∣ψ0

〉
.

Inserting a complete set of eigenstates of the unperturbed Hamiltonian H0,
1 =

∑

m

∣
∣ψm

〉〈
ψm

∣
∣, we find

〈
J(ω)

〉
= ie

∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′ θ(t− t′)VSD(t′)

∑

m

(〈
ψ0

∣
∣eiH0tJe−iH0t

∣
∣ψm

〉〈
ψm

∣
∣eiH0t′Ne−iH0t′

∣
∣ψ0

〉

−
〈
ψ0

∣
∣eiH0t′Ne−iH0t′

∣
∣ψm

〉〈
ψm

∣
∣eiH0tJe−iH0t

∣
∣ψ0

〉)

= ie

∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′θ(t− t′)VSD(t′)

∑

m

(〈
ψ0

∣
∣J

∣
∣ψm

〉〈
ψm

∣
∣N

∣
∣ψ0

〉
ei(E0−Em)(t−t′)

−
〈
ψ0

∣
∣N

∣
∣ψm

〉〈
ψm

∣
∣J

∣
∣ψ0

〉
e−i(E0−Em)(t−t′)

)

. (B.5)

Introducing the short hand notation for the matrix elements,
〈
ψ0

∣
∣J

∣
∣ψm

〉
=

J0,m, and similarly for the matrix elements of N we have

〈
J(ω)

〉
= ie

∫ ∞

−∞
dt eiωt

∫ ∞

−∞
dt′ θ(t− t′)VSD(t′)

∑

m

(

J0,mNm,0 e
i(E0−Em)(t−t′) −N0,mJm,0 e

−i(E0−Em)(t−t′)
)

.



B.1 Linear response conductance 123

Shifting variables as t′′ = t− t′ we find

〈
J(ω)

〉
= ie

∫ ∞

−∞
dt′′ eiωt′′θ(t′′)

∫ ∞

−∞
dt′ eiωt′VSD(t′)

∑

m

(

J0,mNm,0 e
i(E0−Em)t′′ −N0,mJm,0 e

−i(E0−Em)t′′
)

= ieVSD(ω)

∫ ∞

0
dt eiωt

∑

m

(

J0,mNm,0 e
i(E0−Em)t −N0,mJm,0 e

−i(E0−Em)t
)

. (B.6)

This formula is the starting point for deriving the resolvent expressions for
the conductance.

Current-density correlator

To proceed we insert the convergence factor e−ηt in Eq. (B.6) to ensure that
correlations decay with time, and eventually lead to a broadening in the
finite system,

〈
J(ω)

〉
= ieVSD(ω)

∫ ∞

0
dt ei(ω+iη)t (B.7)

∑

m

(

J0,mNm,0 e
i(E0−Em)t −N0,mJm,0 e

−i(E0−Em)t
)

,

and perform the integration,

〈
J(ω)

〉
= ieVSD(ω)

∑

m

[

J0,mNm,0
ei(E0−Em+ω+iη)t

i(E0 − Em + ω + iη)

−N0,mJm,0
e−i(E0−Em−ω−iη)t

−i(E0 − Em − ω − iη)

]∞

t=0

= −eVSD(ω)
∑

m

(

J0,mNm,0
1

E0 − Em + ω + iη

+N0,mJm,0
1

E0 − Em − ω − iη

)

. (B.8)

Reinserting the matrix elements gives,

〈
J(ω)

〉
= −eVSD(ω)

〈ψ0|
(

J
1

E0 −H0 + ω + iη
N +N

1

E0 −H0 − ω − iη
J
)

|ψ0〉

= −eVSD(ω) (B.9)

〈ψ0|
(

J
E0 −H0 + ω − iη

(E0 −H0 + ω)2 + η2
N +N

E0 −H0 − ω + iη

(E0 −H0 − ω)2 + η2
J
)

|ψ0〉 ,
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such that taking the DC limit ω → 0 and using that the current operator is
purely imaginary1 we can condense this expression,

〈
J(ω)

〉
= −eVSD(0)

〈ψ0|
(

J
−iη

(E0 −H0)2 + η2
N +N

iη

(E0 −H0)2 + η2
J
)

|ψ0〉

= −2eVSD(0) Re

[

〈ψ0| J
−iη

(E0 −H0)2 + η2
N |ψ0〉

]

= −2eVSD(0) 〈ψ0|J
−iη

(E0 −H0)2 + η2
N |ψ0〉 . (B.10)

Thus the DC electric current is

I(ω → 0) = −e
〈
J(0)

〉

= 2e2VSD(0) 〈ψ0|J
−iη

(E0 −H0)2 + η2
N |ψ0〉 , (B.11)

and reinserting ~ the DC conductance is

gJN = −e
2

h
〈ψ0| J

4πiη

(H0 − E0)2 + η2
N |ψ0〉 , (B.12)

which is the form used in the DMRG calculations, and where the position of
the current operator can be chosen arbitrarily due to current conservation.

Current-current correlator

The derivation of the current-current correlator starts from the expression
in Eq. (B.6),

〈
J(ω)

〉
= ieVSD(ω) (B.13)

∫ ∞

0
dt eiωt

∑

m

(
J0,mNm,0 e

i(E0−Em)t −N0,mJm,0 e
−i(E0−Em)t

)
,

and reinserting the definition of the matrix elements

〈
J(ω)

〉
= ieVSD(ω)

∫ ∞

0
dt eiωt

∑

m

(

〈ψ0|J |ψm〉 〈ψm| e−iH0tNeiH0t |ψ0〉

− 〈ψ0| e−iH0tNeiH0t |ψm〉 〈ψm|J |ψ0〉
)

, (B.14)

1See App. D for details on the matrix implementation.
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such that the time dependence has been transferred to the density operator.
Inverting the time axis yields

〈
J(ω)

〉
= −ieVSD(ω)

∫ −∞

0
dt e−iωt

∑

m

(

〈ψ0| J |ψm〉 〈ψm| eiH0tNe−iH0t |ψ0〉

− 〈ψ0| eiH0tNe−iH0t |ψm〉 〈ψm| J |ψ0〉
)

= −ieVSD(ω)

∫ −∞

0
dt e−iωt

〈
ψ0

∣
∣[Ĵ(0), N̂ (t)]

∣
∣ψ0

〉
. (B.15)

Performing a partial integration in t and inserting the convergence factor
eηt we find

〈
J(ω)

〉
= −ieVSD(ω)

([e−iωt+ηt

−iω
〈
ψ0

∣
∣[Ĵ(0), N̂ (t)]

∣
∣ψ0

〉]−∞

t=0

−
∫ −∞

0
dt

e−iωt

−iω
〈
ψ0

∣
∣[Ĵ(0), ˆ̇N(t)]

∣
∣ψ0

〉)

, (B.16)

where the boundary term was neglected, in t→ −∞ because of the conver-
gence factor and at t = 0 because the ground state is not current carrying.
The time derivative of the density operator is2

∂tN̂L(t) = i
[

H0, N̂L(t)
]

= −ĴL(t), (B.17)

where JL = −itL(c†ML
d1 − h.c.), where ML denotes the first site in the left

lead, and d1 denotes the first site in the transport region. Keeping the
positive current direction fixed we have similarly

∂tN̂R(t) = i
[

H0, N̂R(t)
]

= +ĴR(t), (B.18)

where JR = −itR(c†MR
dMS

− h.c.), where MS denotes the last site in the
transport region, and MR denotes the first site in the right lead. Hence we
find for the density perturbation

∂t
1

2
(N̂L(t) − N̂R(t)) = −1

2
(ĴL(t) − ĴR(t))

= −ĴL(t), (B.19)

2Notice that the current operator is defined such that it matches the density pertur-
bation – hence the ‘peculiar’ sign of JL.
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where current conservation in steady state was used such that JL = −JR

with the notation above.3 In fact the current operator can be placed any-
where in the system for the same reason.

Thus we have

〈
J(ω)

〉
= eVSD(ω)

∫ −∞

0
dt

e−iωt

ω

〈
ψ0

∣
∣[Ĵ(0), Ĵ(t)]

∣
∣ψ0

〉
, (B.20)

Inserting once more a complete set of eigenstates for the Hamiltonian we
find similarly to the current-density derivation,

〈
J(ω)

〉
= eVSD(ω)

∫ −∞

0
dt

e−iωt

ω

∑

m

(

〈ψ0| J |ψm〉 〈ψm| eiH0tJe−iH0t |ψ0〉

− 〈ψ0| eiH0tJe−iH0t |ψm〉 〈ψm|J |ψ0〉
)

= eVSD(ω)

∫ −∞

0
dt

e−iωt

ω
∑

m

(

J0,mJm,0 e
i(Em−E0)t − J0,mJm,0 e

−i(Em−E0)t
)

=
eVSD(ω)

ω
∑

m

J0,mJm,0

[ ei(Em−E0−ω−iη)t

i(Em − E0 − ω − iη)
− e−i(Em−E0+ω+iη)t

−i(Em − E0 + ω + iη)

]−∞

t=0

(B.21)

and inserting the matrix elements again,

〈
J(ω)

〉
= −eVSD(ω)

iω

(

〈ψ0| J
1

H0 − E0 − ω − iη
J |ψ0〉

+ 〈ψ0|J
1

H0 − E0 + ω + iη
J |ψ0〉

)

, (B.22)

where the complete set of states has been pulled out. This expression how-
ever has an apparent divergence in the DC limit, and in order to take the
DC limit explicitly a first order expansion in ω is performed.

First order expansion

To avoid the numerically troublesome cancelation of 1/ω, and take the DC
limit explicitly, a first order expansion in ω of the resolvents is performed.

3Notice that this does not violate current or particle conservation since the current
that flows out of the left contact has to flow into the right contact.
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Starting from the resolvents in Eq. (B.22) we find

1

H0 −E0 − ω − iη
+

1

H0 − E0 + ω + iη
=

1

H0 − E0 − iη
+

1

H0 − E0 + iη

+
( 1

(H0 −E0 − iη)2
− 1

(H0 − E0 + iη)2

)

ω + O(ω2). (B.23)

The current must be real, and the prefactor in Eq. (B.22) is purely imaginary,
so we seek the imaginary part of this expansion. Thus the zero’th order term
vanishes as it should such that the current does not diverge in the DC limit,
and we are left with the first order contribution, canceling the diverging
prefactor,

1

(H0 − E0 − iη)2
− 1

(H0 − E0 + iη)2
=

4iη(H0 − E0)

((H0 − E0)2 + η2)2
, (B.24)

such that finally the particle current is

〈
J(0)

〉
= −eVSD(0) 〈ψ0|J

4η(H0 − E0)

((H0 − E0)2 + η2)2
J |ψ0〉 , (B.25)

and the corresponding DC electric current

I(0) = −e
〈
J(0)

〉

= e2VSD(0) 〈ψ0| J
4η(H0 −E0)

((H0 − E0)2 + η2)2
J |ψ0〉 . (B.26)

Reinserting finally ~ the DC conductance is

gJJ =
e2

h
〈ψ0|J

8πη(H0 − E0)
(
(H0 − E0)2 + η2

)2J |ψ0〉 , (B.27)

which is the form used in the DMRG. It should be noted that also in this
case the current operators need not reside on the same link, but can be
placed arbitrarily.

B.2 Single particle Greens functions

Here we derive in detail the resolvent formulations for the single particle
Greens functions as used in the DMRG setup reviewed in Chap. 2.5. For
consistency we use the notation H0 for the Hamiltonian although these cal-
culations do not rely on a perturbation in voltage and hence only a single
Hamiltonian is relevant.
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We Fourier transform the real time definitions of the Greens functions
and introduce the usual broadening parameter η. The fermionic Greens
functions we consider are defined by

G>
i,j(t, t

′) = −i
〈
ci (t)c

†
j(t

′)
〉
, (B.28a)

G<
i,j(t, t

′) = i
〈
c†j(t

′)ci (t)
〉
, (B.28b)

Gr
i,j(t, t

′) = −iθ(t− t′)
〈{
ci (t), c

†
j(t

′)
}〉
, (B.28c)

Ga
i,j(t, t

′) = iθ(t′ − t)
〈{
ci (t), c

†
j(t

′)
}〉
, (B.28d)

where we use i and j to denote the generic quantum numbers, and where spin
is understood but not written explicitly. The notation {A,B} = AB + BA
denotes the fermionic anticommutator. In the zero temperature limit the
average is a ground state average and this is the limit we consider in this
work.

Inserting explicitly the time dependence for the retarded Greens func-
tion, it can be written as a single matrix exponential,

Gr
i,j(t, t

′) = −iθ(t− t′)
(〈
ψ0

∣
∣eiH0tcie

−iH0teiH0t′c†je
−iH0t′

∣
∣ψ0

〉

+
〈
ψ0

∣
∣eiH0t′c†je

−iH0t′eiH0tcie
−iH0t

∣
∣ψ0

〉)

= −iθ(t− t′)
(〈
ψ0

∣
∣cie

i(E0−H0)(t−t′)c†j
∣
∣ψ0

〉

+
〈
ψ0

∣
∣c†je

−i(E0−H0)(t−t′)ci
∣
∣ψ0

〉)

, (B.29)

where it is evident that the Greens function depends only on a single time
argument. Hence the single variable Fourier transform is

Gr
i,j(ω) = −i

∫ ∞

0
dt

(〈
ψ0

∣
∣cie

i(E0−H0)tc†j
∣
∣ψ0

〉

+
〈
ψ0

∣
∣c†je

−i(E0−H0)tci
∣
∣ψ0

〉)

ei(ω+iη)t

=
[〈
ψ0

∣
∣ci

ei(E0−H0+ω+iη)t

i(E0 −H0 + ω + iη)
c†j

∣
∣ψ0

〉

+
〈
ψ0

∣
∣c†j

e−i(E0−H0−ω−iη)t

−i(E0 −H0 − ω − iη)
ci

∣
∣ψ0

〉]∞

t=0

=
〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉

−
〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
, (B.30)

where the broadening, or convergence, parameter η was introduced in the
Fourier transform. This is the desired resolvent form of the Greens function,
to which the correction vector DMRG is applicable. Note that the advanced
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Greens function is obtained by a Hermitian conjugation of the retarded
Greens function, and hence needs no further attention.

Similar manipulations apply for the greater Greens function,

G>
i,j(t, t

′) = −i
〈
ψ0

∣
∣eiH0tcie

−iH0teiH0t′c†je
−iH0t′

∣
∣ψ0

〉

= −i
〈
ψ0

∣
∣eiE0(t−t′)cie

−iH0(t−t′)c†j
∣
∣ψ0

〉
. (B.31)

Using again a single variable Fourier transformation we find that

G>
i,j(ω) = −i

∫ ∞

−∞
dt

〈
ψ0

∣
∣cie

−i(H0−E0)tc†j
∣
∣ψ0

〉
eiωt

= −2πi
〈
ψ0

∣
∣ciδ(ω −H0 + E0)c

†
j

∣
∣ψ0

〉
, (B.32)

where the δ function was explicitly inserted. Broadening this δ function
to an area normalized Lorentzian of width η to incorporate the finite size
broadening we find

G>
i,j(ω) = −2i

〈
ψ0

∣
∣ci

η

(ω −H0 + E0)2 + η2
c†j

∣
∣ψ0

〉

= −2i Im

[
〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
]

, (B.33)

which is once again the desired resolvent form. Notice that the resolvent
needed to calculate G> is identical to the resolvent needed to calculate the
retarded Greens function in Eq. (B.30).

Similar manipulations for the lesser Greens function yield

G<
i,j(t, t

′) = i
〈
ψ0

∣
∣e−iE0(t−t′)c†je

iH0(t−t′)cie
−iH0t

∣
∣ψ0

〉
, (B.34)

giving the Fourier transform

G<
i,j(ω) = i

∫ ∞

−∞
dt

〈
ψ0

∣
∣cie

i(H0−E0)tc†j
∣
∣ψ0

〉
eiωt

= 2πi
〈
ψ0

∣
∣ciδ(ω +H0 − E0)c

†
j

∣
∣ψ0

〉

= −2i Im

[
〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉
]

. (B.35)

Notice that also the resolvent needed to calculate G< is identical to the resol-
vent needed in the evaluation of the retarded Greens function in Eq. (B.30).

Thus we have shown that evaluating the two resolvents,

〈
ψ0

∣
∣c†j

1

H0 −E0 + ω + iη
ci

∣
∣ψ0

〉
, (B.36a)

〈
ψ0

∣
∣ci

1

H0 −E0 − ω − iη
c†j

∣
∣ψ0

〉
, (B.36b)
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enables the calculation of retarded, advanced, lesser, and greater single par-
ticle Greens functions.

In the DMRG we thus need to target real- and imaginary parts of the
resolvents in Eq. (B.36), specifically we target additionally to the ground
state the states

∣
∣Re1

〉
=

H0 − E0 + ω

(H0 − E0 + ω)2 + η2
ci

∣
∣ψ0

〉
, (B.37a)

∣
∣Im1

〉
=

−η
(H0 − E0 + ω)2 + η2

ci
∣
∣ψ0

〉
, (B.37b)

∣
∣Re2

〉
=

H0 − E0 − ω

(H0 − E0 − ω)2 + η2
c†j

∣
∣ψ0

〉
, (B.37c)

∣
∣Im2

〉
=

η

(H0 − E0 − ω)2 + η2
c†j

∣
∣ψ0

〉
, (B.37d)

and from those states the resolvents in Eq. (B.36) can be evaluated as,

〈
ψ0

∣
∣c†j

1

H0 − E0 + ω + iη
ci

∣
∣ψ0

〉
=

〈
ψ0

∣
∣c†j

(∣
∣Re1

〉
+ i

∣
∣Im1

〉)
, (B.38a)

〈
ψ0

∣
∣ci

1

H0 − E0 − ω − iη
c†j

∣
∣ψ0

〉
=

〈
ψ0

∣
∣ci

(∣
∣Re2

〉
+ i

∣
∣Im2

〉)
, (B.38b)

from which all single particle Greens functions can be calculated.



Appendix C

Greens function solution for

resonant chains

In this appendix we consider the Greens function calculation of the conduc-
tance of a non-interacting resonant MS site chain coupled to non-interacting
tight-binding leads. For clarity we start with a two site chain as this will
make the structure of the calculation clear, and then generalize to the case of
MS sites. In both cases we give explicit expressions for the Greens functions
needed in the calculation of the DC conductance.

C.1 Resonant 2 site chain

The Hamiltonian of the problem is

HL = −t
∞∑

l=1

(

c†l cl+1 + h.c.
)

(C.1a)

HR = −t
∞∑

r=1

(

a†rar+1 + h.c.
)

(C.1b)

HS = −tD
(

d†0d1 + h.c.
)

+ µg

(

d†0d0 + d†1d1

)

(C.1c)

HT = −tL
(

d†0c1 + h.c.
)

− tR

(

d†1a1 + h.c.
)

(C.1d)

First we consider the time derivative of the left lead number operator to find
the particle current out of the left lead,

NL =
∞∑

l=1

c†l cl , (C.2)

IL = −eṄL = − ie
~

[H,NL], (C.3)
[
H,NL

]
= · · · = −tL[d†0c1 − c†1d0], (C.4)

IL = 〈IL〉 =
ie

~
tL[〈d†0c1〉 − 〈c†1d0〉]. (C.5)
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We therefore define Greens functions as

G<
d0c1

(t− t′) ≡ i〈c†1(t′)d0(t)〉, (C.6a)

G<
c1d0

(t− t′) ≡ i〈d†0(t′)c1(t)〉. (C.6b)

These Greens functions are defined such that

[G<
d0c1

(t, t)]∗ = [i〈c†1(t)d0(t)〉]∗

= −i〈d†0(t)c1(t)〉 = −G<
c1d0

(t, t), (C.7)

and thus the current can be expressed in terms of these functions

IL =
e

~
tL[i〈d†0c1〉 − i〈c†1d0〉]

=
etL
~

[G<
c1d0

(t, t) +G<
c1d0

(t, t)∗]

=
2etL

~
ReG<

c1d0
(t, t) = −2etL

~
ReG<

d0c1
(t, t). (C.8)

Thus we seek G<
d0c1

(t− t′) and therefore consider the corresponding time
ordered Greens function Gt

d0c1
(t−t′). The definition and equation of motion

for Gt
d0c1

(t− t′) is

Gt
d0c1(t− t′) = −i〈T{d0(t)c

†
1(t

′)}〉, (C.9)

−i∂t′G
t
d0c1(t− t′) = −i〈T{d0(t)[H, c

†
1](t

′)}〉, (C.10)

where an equal time average has canceled due to the step functions implicit
in the time ordering. The commutator is easily found,

[H, c†1] = −t[c†1c2 + c†2c1, c
†
1] − tL[d†0c1 + c†1d0, c

†
1]

= −tc†2{c1, c
†
1} − tLd

†
0{c1, c

†
1}

= −tc†2 − tLd
†
0, (C.11)

and thus the EOM is

−i∂t′G
t
d0c1(t− t′) = −t(−i〈T{d0(t)c

†
2(t

′)}〉) − tL(−i〈T{d0(t)d
†
0(t

′)}〉)
≡ −tGt

d0c2(t− t′) − tLG
t
d0d0

(t− t′), (C.12)

and Fourier transformed

ωGt
d0c1(ω) = −tGt

d0c2(ω) − tLG
t
d0d0

(ω), (C.13)

where two additional Greens functions have been introduced. These Greens
functions must be found separately.
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C.1.1 Lead Greens function

In this section we derive the EOM for the Greens functions for the leads.
Since the left and right leads are identical in the infinitesimal source-drain
voltage regime we derive the Greens function for the right lead only,

Gt
d0a2

(t− t′) = −i〈T{a2(t)d
†
0(t

′)}〉. (C.14)

Using again the EOM technique repeatedly we find a series of Greens func-
tions

i∂tG
t
d0a2

(t− t′) = −tGt
d0a1

(t− t′) − tGt
d0a3

(t− t′),

i∂tG
t
d0ar

(t− t′) = −tGt
d0ar−1

(t− t′) − tGt
d0ar+1

(t− t′), r = 2, 3, · · ·

Fourier transformation gives i∂t → ω

ωGt
d0ar

(ω) = −tGt
d0ar−1

(ω) − tGt
d0ar+1

(ω), r = 2, 3, · · ·

Solving this semi-infinite hierarchy gives a continued fraction represen-
tation of the Greens function

Gt
d0a2

(ω) =
−tGt

d0a1
(ω)

ω − t2

ω− t2

ω−···

. (C.15)

Defining the self-energy as

Σ(ω) ≡ t2

ω − t2

ω−···

,

we can use the self similarity to express Σ in closed form,

Σ(ω) ≡ t2

ω − Σ(ω)
⇒

Σ2(ω) − ωΣ(ω) + t2 = 0 ⇒

Σ(ω) =
ω ±

√
ω2 − 4t2

2
. (C.16)

In the atomic limit t → 0 we expect to find zero self-energy, and hence the
only physical solution is

Σ(ω) =
ω −

√
ω2 − 4t2

2
. (C.17)

Thus finally

Gt
d0a2

(ω) =
−tGt

d0a1
(ω)

ω − Σ(ω)
. (C.18)
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C.1.2 Chain Greens function

In this section the Greens function for the chain is derived in a similar fashion
as the lead Greens function in the previous section. The definition is

Gt
d0d0

(t− t′) ≡ −i〈T{d0(t)d
†
0(t

′)}〉 (C.19)

= −iθ(t− t′)〈d0(t)d
†
0(t

′)〉 + iθ(t′ − t)〈d†0(t′)d0(t)〉,

giving the EOM

i∂tG
t
d0d0

(t− t′) = δ(t − t′)〈d0(t)d
†
0(t

′)〉 + θ(t− t′)〈∂td0(t)d
†
0(t

′)〉
+δ(t′ − t)〈d†0(t′)d0(t)〉 − θ(t′ − t)〈d†0(t′)∂td0(t)〉

= 1 + iθ(t− t′)〈[H, d0](t)d
†
0(t

′)〉 − iθ(t′ − t)〈d†0(t′)[H, d0](t)〉.

The commutator is

[H, d0] = [HS, d0] + [HT , d0]

= tDd1 − µgd0 + tLc1, (C.20)

and hence

i∂tG
t
d0d0

(t− t′) = 1 + iθ(t− t′)〈(tDd1 − µgd0 + tLc1)(t)d
†
0(t

′)〉
−iθ(t′ − t)〈d†0(t′)(tDd1 − µgd0 + tLc1)(t)〉

= 1 − tDG
t
d0d1

(t− t′) + µgG
t
d0d0

(t− t′)

−tLGt
d0c1(t− t′) ⇒

(i∂t − µg)G
t
d0d0

(t− t′) = 1 − tDG
t
d0d1

(t− t′) − tLG
t
d0c1(t− t′) ⇒

(ω − µg)G
t
d0d0

(ω) = 1 − tDG
t
d0d1

(ω) − tLG
t
d0c1(ω). (C.21)

Further the EOM for the introduced Greens functions are found similarly

i∂tG
t
d0d1

(t− t′) = δ(t− t′)〈d1(t)d
†
0(t

′)〉 + iθ(t− t′)〈[H, d1](t)d
†
0(t

′)〉
+δ(t′ − t)〈d†0(t′)d1(t)〉 − iθ(t′ − t)〈d†0(t′)[H, d1](t)〉,

where

[H, d1] = [HS , d1] + [HT , d1]

= tDd0 − µgd1 + tRa1 (C.22)

such that

i∂tG
t
d0d1

(t− t′) = iθ(t− t′)〈(tDd0 − µgd1 + tRa1)(t)d
†
0(t

′)〉
−iθ(t′ − t)〈d†0(t′)(tDd0 − µgd1 + tRa1)(t)〉

= −tDGt
d0d0

(t− t′) + µgG
t
d0d1

(t− t′)

−tRGt
a1d0

(t− t′) ⇒
(i∂t − µg)G

t
d0d1

(t− t′) = −tDGt
d0d0

(t− t′) − tRG
t
d0a1

(t− t′) ⇒
(ω − µg)G

t
d0d1

(ω) = −tDGt
d0d0

(ω) − tRG
t
d0a1

(ω). (C.23)
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Finally the lead Greens function is

i∂tG
t
d0a1

(t− t′) = −tGt
d0a2

(t− t′) − tRG
t
d0d1

(t− t′),

ωGt
d0a1

(ω) = −tGt
d0a2

(ω) − tRG
t
d0d1

(ω). (C.24)

C.1.3 Solution for time ordered Greens function

Putting together the EOM’s of the previous section leads to the solutions

Gt
d0a1

(ω) =
−tRGt

d0d1
(ω)

ω − Σ(ω)
, (C.25)

Gt
d0d1

(ω) =
−tDGt

d0d0
(ω)

ω − µg − ΣR(ω)
, (C.26)

Gt
d0d0

(ω) =
1

ω − µg − Σd0d0(ω)
, (C.27)

Gt
d0c1(ω) = −tLGt

d0d0
(ω)gt

c1c1(ω), (C.28)

where the self-energies are defined as

ΣL/R(ω) =
t2L/R

ω − Σ(ω)
, (C.29)

Σd0d0(ω) =
t2D

ω − µg − t2R
ω−Σ(ω)

− t2L
ω − Σ(ω)

, (C.30)

and where the lead Greens function is

gt
c1c1(ω) =

1

ω − Σ(ω)
. (C.31)

The Greens function Gt
d0c1

(ω) should be taken to non-equilibrium by
analytic continuation.

C.1.4 Analytic continuation and non-equilibrium

The structure of the time ordered Greens function in non-equilibrium is
identically the same as in equilibrium, only the times and time ordering are
to be taken on the Keldysh contour.

In the equilibrium case we may restate the result as a convolution in
time space

Gt
d0c1(ω) = −tLGt

d0d0
(ω)gt

c1c1(ω) ⇒ (C.32)

Gt
d0c1(t− t′) = −tL

∫

dt1G
t
d0d0

(t− t1)g
t
c1c1(t1 − t′). (C.33)
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This result can be taken over to the non-equilibrium case by letting all times
be on the Keldysh contour C,

Gt
d0c1(τ, τ

′) = −tL
∫

C
dτ1G

t
d0d0

(τ, τ1)g
t
c1c1(τ1, τ

′). (C.34)

By using the rules for analytic continuation [27] we can therefore extract
the lesser component as

G<
d0c1

(t− t′) = −tL
∫

dt1
[

Gr
d0d0

(t− t1)g
<
c1c1(t1 − t′) +G<

d0d0
(t− t1)g

a
c1c1(t1 − t′)

]

, (C.35)

and using again the Fourier transformation of a convolution we arrive at,

G<
d0c1

(ω) = −tL
[

Gr
d0d0

(ω)g<
c1c1(ω) +G<

d0d0
(ω)ga

c1c1(ω)
]

. (C.36)

Thus we need to extract lesser, retarded, and advanced parts of the time
ordered Greens functions found previously,

gt
c1c1(ω) =

1

ω − Σ(ω)
, (C.37)

Gt
d0d0

(ω) =
1

ω − µg − Σd0d0(ω)
. (C.38)

Lesser component of gt
c1c1

The leads are assumed to be in local equilibrium, and hence the fluctuation-
dissipation theorem applies. Thus the lesser component of the lead Greens
function gt

c1c1 is given simply by

g<
c1c1(ω) = iA(ω)nL

F , (C.39)

and similarly for the right lead

g<
a1a1

(ω) = iA(ω)nR
F . (C.40)

The spectral function for the leads is given by

A(ω) = −2Im [g11(ω)] , (C.41)

where an explicit expression for the Greens function g11 is given later in this
chapter.
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Lesser component of Gt
d0d0

Expanding the fraction before extracting the lesser component, and regroup-
ing the terms gives the lesser component of the Greens function as [27]

G<
d0d0

(ω) =
1

ω − µg − Σr
d0d0

Σ<
d0d0

1

ω − µg − Σa
d0d0

, (C.42)

where we still need to find Σ<
d0d0

using a similar calculation. Writing

Σd0d0 =
t2D

ω − µg − ΣR
+

t2L
ω − Σ

, (C.43)

we have

Σ<
d0d0

= t2D
1

ω − µg − Σr
R

Σ<
R

1

ω − µg − Σa
R

+t2L
1

ω − Σr
Σ< 1

ω − Σa
, (C.44)

where finally we have to find Σ<
R,

ΣR =
t2R

ω − Σ
,

Σ<
R = t2R

1

ω − Σr
Σ< 1

ω − Σa
. (C.45)

Lesser component of Σ(ω)

Σ(ω) ≡ t2

ω − t2

ω−···

= t2gt
11(ω), (C.46)

where gt
11(ω) is the isolated lead Greens function. Thus we also have

Σ<(ω) = t2g<
11(ω)

= it2A(ω)nF (ω), (C.47)

where nF is the Fermi function for the lead in question. Inserting finally the
spectral function we have

Σ<(ω) = −2it2Im [gr
11(ω)]nF (ω). (C.48)

When calculating the isolated lead Greens function an infinitesimal imag-
inary part should be remembered. Using results from [81] we can write

g11(ω) =
ω/2t− sign(ω)

√

(ω/2t)2 − 1

t
, (C.49)

where ω → ω + iη gives retarded and ω → ω − iη gives advanced Greens
function.

Note that the symmetric coupling is not a strict requirement, and non-
symmetric coupling would result in different lead self-energies.
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C.1.5 Current and conductance

Using the expression from Eq. (C.8) we can now express the current through
the left contact as

IL = −2etL
~

ReG<
d0c1

(t, t)

= −2etL
~

Re

∫
dω

2π
G<

d0c1
(ω). (C.50)

Collecting the pieces we find

G<
d0c1

(ω) = −tL
[
Gr

d0d0
(ω)g<

c1c1(ω) +G<
d0d0

(ω)ga
c1c1(ω)

]
, (C.51)

and thus

IL =
2et2L

~
Re

∫
dω

2π

[
Gr

d0d0
(ω)g<

c1c1(ω) +G<
d0d0

(ω)ga
c1c1(ω)

]
. (C.52)

The current can be symmetrized by noting that in steady state the current
flowing out of the right lead must equal minus the current flowing out of the
left lead, IR = −IL, and thus

I =
IL + IL

2
=
IL − IR

2

=
e

~
Re

∫
dω

2π

[
t2L(Gr

d0d0
g<
c1c1 +G<

d0d0
ga
c1c1) − t2R(Gr

d1d1
g<
a1a1

+G<
d1d1

ga
a1a1

)
]
.

(C.53)

Symmetric coupling

Focusing on the case tL = tR ≡ t′ and using that the lesser Greens function
is imaginary we find

I =
et′2

~
Re

∫
dω

2π

[
− 2i(nL

FG
r
d0d0

− nR
FG

r
d1d1

)Im [gr
11] + (G<

d0d0
−G<

d1d1
)ga

11

]

=
et′2

~

∫
dω

2π

[

2Im
[[
nL

FG
r
d0d0

− nR
FG

r
d1d1

]]
Im [gr

11]

−Im
[
G<

d0d0
−G<

d1d1

]
Im [ga

11]
]

. (C.54)

A few tedious calculations using the free particle result, g<
ℓ1ℓ1

= iA(ω)ni
F ,

where A(ω) = −2Im [gr
11], ℓ = a/c, and correspondingly i = L/R, yield the

results

nL
FG

r
d0d0

− nR
FG

r
d1d1

= (nL
F − nR

F )Gr
d0d0

, (C.55)

Im
[
G<

d0d0
−G<

d1d1

]
= (nL

F − nR
F )t′2

∣
∣Gr

d0d0

∣
∣2A t2

∣
∣gr

11

∣
∣2

[
− t2D

∣
∣Gr

R

∣
∣2 + 1

]
,

(C.56)
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where the fact that by symmetry the diagonal retarded and advanced Greens
functions for the two sites are identical when tL = tR has been used, and
where the introduced Greens function is

Gr
R =

1

ω − µg − Σr
R

. (C.57)

Hence the current is

I =
2et′2

~

∫
dω

2π
(nL

F − nR
F )Im [gr

11] (C.58)

{

Im
[
Gr

d0d0

]
+ t′2

∣
∣Gr

d0d0

∣
∣2Im [gr

11] t
2
∣
∣gr

11

∣
∣2

[

t2D
∣
∣Gr

R

∣
∣2 − 1

]}

.

Now using that in linear response we can expand the difference in Fermi
functions as nL

F − nR
F = eVSDδ(ω)1 we finally arrive at,

I =
e2

~

VSDt
′2

2π
Im [gr

11] (C.59)

×
{

Im
[
Gr

d0d0

]
+ t′2

∣
∣Gr

d0d0

∣
∣2Im [gr

11] t
2
∣
∣gr

11

∣
∣2

[

t2D
∣
∣Gr

R

∣
∣2 − 1

]}∣
∣
∣
ω=0

,

and hence the DC conductance

g =
I

VSD

=
e2

h
t′2Im [gr

11] (C.60)

×
{

Im
[
Gr

d0d0

]
+ t′2

∣
∣Gr

d0d0

∣
∣2Im [gr

11] t
2
∣
∣gr

11

∣
∣2

[

t2D
∣
∣Gr

R

∣
∣2 − 1

]}∣
∣
∣
ω=0

,

where we have absorbed a factor of 2π into ~ to give h.

C.2 Resonant MS site chain

The generalization of the derivation in the previous chapter to resonant
MS site chains is straight forward, since the overall structure is the same.
The leads are unchanged, but the Greens function of the chain is obviously
changed. However the change is somewhat trivial, captured by the self-
energy build by iteration in Ri,

Σd0d0(ω) =
t2D

ω − µg − ΣRMS−1
(ω)

, (C.61)

ΣRi(ω) =
t2D

ω − µg − ΣRi−1(ω)
, (C.62)

ΣR1(ω) =
t2R

ω − Σ(ω)
, (C.63)

1Eg.
R

∞

−∞
(nL

F − nR
F )gdω =

R µL

µR

gdω ≈ g(0)(µL − µR) = eVSDg(0), µL − µR → 0.
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where Σ(ω) was found in the previous section.
Thus also G<

d0d0
changes and a nested product of retarded and advanced

Greens functions is found. Using the notation

G
r/a
d0d0

(ω) =
1

ω − µg − Σ
r/a
d0d0

(ω)
, (C.64)

G
r/a
Ri−1

(ω) =
1

ω − µg − Σ
r/a
Ri−1

(ω)
, (C.65)

g
r/a
11 (ω) =

1

ω − Σr/a(ω)
, (C.66)

we arrive at the expression

G<
d0d0

= Gr
d0d0

( 1∏

i=MS−1

t2DG
r
Ri

)

Σ<
R

( MS−1∏

i=1

Ga
Ri

)

Ga
d0d0

, (C.67)

enabling us to use again the same expressions as used in the preceding
section,

g =
I

VSD

=
e2

h
t′2Im [gr

11] ×
{

Im
[
Gr

d0d0

]
(C.68)

+t′2
∣
∣Gr

d0d0

∣
∣2Im [gr

11] t
2
∣
∣gr

11

∣
∣2

[ MS−1
∏

i=1

∣
∣
∣

t2D
ω − µg − ΣRi

∣
∣
∣

2
− 1

]}∣
∣
∣
ω=0

.

C.2.1 Matlab implementation

The expressions derived in the previous sections have been implemented in
Matlab, and the code is given below. A comparison of the exact diago-
nalization (ED) calculations and Greens function (GF) calculations for the
spinless case with parameters MS = 7, t′ = 0.5, tD = 1, and t = 1 is shown
in Fig. C.1.

% Syntax: [g, mug] = conductance(MS, t, tD, tLR, mug_min, mug_max)

% ’t’ = hopping element in leads

% ’tD’ = hopping element within nanostructure

% ’tLR’ = weak link hopping element t_L=t_R=tLR

% ’mug_min/max = interval of external potential

% ’mug_min’, ’mug_max’, ’tLR’ are scaled by parameter ’t’

function result=conductance(MS, t, tD, tLR, mug_min, mug_max)

Matr_Size = 10001;

mug = linspace(t*mug_min,t*mug_max,Matr_Size);

tLR = t*tLR;
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Sigma_retarded = t^2*GR_isolated_lead(0, t);

Sigma_R_retarded = tLR^2./(-Sigma_retarded);

Sigma_final_retarded(1,:) = ones(1,Matr_Size)*Sigma_R_retarded;

for k=2:1:MS-1

temp_retarded = tD^2./(-mug-Sigma_final_retarded(k-1,:));

Sigma_final_retarded(k,:) = temp_retarded;

end

Sigma_d0d0_retarded = tD^2./(-mug-Sigma_final_retarded(MS-1,:)) ...

+ tLR^2/(-Sigma_retarded);

G_d0d0_retarded = 1./(-mug-Sigma_d0d0_retarded);

prod_abs = t^2*(abs(1./(-mug-Sigma_final_retarded(1,:)))).^2;

for k=2:1:MS-1

prod_abs = prod_abs*tD^2 ...

.* (abs(1./(-mug-Sigma_final_retarded(k,:)))).^2;

end

g = 2*tLR^2*(imag(G_d0d0_retarded) ...

+ tLR^2*(abs(G_d0d0_retarded)).^2 ...

.*(prod_abs-1).*imag(GR_isolated_lead(0, t)) ...

.*t^2.*(abs(GR_isolated_lead(0, t))).^2 ...

).*imag(GR_isolated_lead(0, t));

result = [mug’ g’];

function result=GR_isolated_lead(omega, t)

for k=1:1:length(omega)

if (abs(omega(k)) < 2*t)

result(k) = 0.5*omega(k)/t^2 ...

- i*sqrt(1-0.25*omega(k).^2/t^2)/t;

elseif (abs(omega(k)) > 2*t)

result(k) = 0.5*omega(k)/t^2-sign(omega(k)) ...

.* sqrt(0.25*omega(k).^2/t^2-1)/t;

else

result(k) = 0;

end

end
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Figure C.1: Comparison of exact diagonalization (‘ED’) and Greens function (‘GF’)
solution for MS = 7. The parameter values are tD = 1, t = 1, tL = tR = 0.5, and
nearest neighbor interaction V = 0. The two sets of data are on top of each other,
verifying the agreement of the exact diagonalization using the momentum-space
setup and the Greens function calculation.



Appendix D

Implementation details

In this chapter we discuss a few implementation details of the NRG++ code
used in this work. We also discuss the hardware requirements, and the
calculational time of the different implementations on the machines used in
this work.

D.1 Matrix implementations

In the NRG++ implementation of the DMRG method all matrices are imple-
mented as real, such that the imaginary unit is pulled out explicitly from
imaginary components, resulting in real matrices. An example was given
in Chap. 2.2.3 where the real and imaginary parts of the correction vectors
where targeted explicitly.

Further the implementation of the creation c†ℓ and annihilation cℓ oper-
ators are as real matrices, in the site basis give by

c†ℓ =

(
0 0
1 0

)

, (D.1a)

cℓ =

(
0 1
0 0

)

. (D.1b)

This in turn implies that operators can be purely real or imaginary, for
instance the current operator is defined as

Ji = −iti(c†i−1ci − c†i ci−1), (D.2)

such that when c†ℓ and cℓ are real the current operator is purely imaginary
due to the prefactor.

D.2 Extracting results

In the implementation used in this work the results for the targeted quanti-
ties are written out during the execution of the code, such that even if the
calculation does not finish within the queue limitation of the machine used.

143



144 Implementation details

The results vary during the sweeping and the ‘correct’ values must be
extracted. In order to process the large amount of data it is essential to
have a (semi) automatic extraction scheme. Each DMRG calculation writes
data into separate files, such that a manual extraction is unfeasible. For the
calculations presented in Chap. 4 we even have a separate calculation for
each spin component, such that we have two output files for each point in a
curve.

We use an extraction scheme that searches for a plateau in the extracted
physical quantity. By specifying an interval in the sweep for which the
extraction should be done – i.e., by sorting away the extreme values in the
asymmetric configuration, we can finetune this extraction.

D.3 Real-space leads

The simplest setup uses a real-space representation of the leads. Specifically
each lead consists of a tight-binding chain joined with a real-space repre-
sentation of the Wilson chain. This is done in order to reduce the finite
size level splitting as the Wilson chain is exponentially dense around εF = 0
for half filling. In this chapter we review a few aspects of the real-space
representation for the leads.

D.3.1 Coupling to flat Hamiltonian

In the NRG++ implementation used we target additionally a flat Hamiltonian
– i.e., a homogeneous hopping Hamiltonian, in the initial steps of the DMRG.

This is done to ensure that every site in the system is coupled to the rest
of the system via non-vanishing hopping matrix elements, such that there is
always a possibility to relax from a given state. Otherwise the system might
get trapped in a region of the Hilbert space it cannot get out of due to the
lacking coupling. Including this coupling makes the method more stable in
the initial sweeps of the method.

After some initial sweeps this coupling is switched off in order to end up
with the system targeted in the overall calculation, and a few sweeps are
performed to allow the DMRG to converge to this system.

D.3.2 Scaled boundaries

The scaled boundaries, or damped boundary conditions, are introduced to
reduce the effect of the hard wall boundary conditions, and provide a better
finite size scaling for the leads. The inspiration comes from the hopping
Hamiltonian of the Wilson chain. The Wilson chain is exponentially dense
around the Fermi edge, and in real-space it corresponds to a tight-binding
chain with exponentially damped hopping matrix elements. In the real-
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space DMRG setup the leads are modeled by an undamped tight-binding
chain joined with a real-space Wilson chain.

The improved finite size scaling due to the scaled boundaries can be
traced to two properties; firstly they act as a particle reservoir, since the
energy cost of adding or removing a particle from these regions is of the
order of the (reduced) hopping elements. Secondly the reduced hopping
elements reduce the finite size level splitting at the Fermi energy, hence
making possible the use of a much smaller η and reducing the undesired
broadening introduced by η.

Using exact diagonalization calculations we have investigated the effect
of the scaled boundaries on the finite size level splitting. In Fig. D.1 we
have plotted the energy spectrum of the non-interacting system without
damping and with exponential damping of varying strengths d, the specific
values given in the figure. We damp MD = 30 sites in each lead and the
total system size used in this calculation is M = 150 sites.

Using a damping factor d = 1 corresponds to no damping at all, and the
cosine-band is recognized in this case. Turning up the strength of the damp-
ing it is apparent from the figure that the spectrum is condensed around
εF = 0, and for d = 0.8 an almost flat dispersion at the Fermi edge is found.
This in turn means that the finite size level splitting has been reduced signif-
icantly such that now many energy levels are within a small energy window
around εF = 0 at half filling. This also illustrates why the damped bound-
ary conditions are only effective at exactly half filling, since having a Fermi
edge slightly away from ε = 0 would result in a larger level splitting at the
Fermi edge.

D.3.3 Interpolation to half filling

When a finite gate potential is applied to the nanostructure the particle
number on the structure is changed. As each peak in the conductance spec-
trum is passed electrons are pushed out of (or pulled into) the nanostructure,
hence changing the particle number in the leads.

The discretization scheme used for the leads is only effective around
εF = 0 corresponding to half filling, as discussed in the previous section.
Thus gating the structure inherently pushes the system away from the target
of the discretization scheme, hence reducing the accuracy of the calculation.

One way to compensate for this effect is to perform two otherwise iden-
tical sets of calculations using different particle numbers, eg. N and N − 1,
and then interpolate the two sets of results such that the leads are exactly
half filled [25]. It is important to stress that this is not a fitting procedure
since there are no free parameters being fitted. It is merely a clever way of
keeping the filling in the leads as close to one half as possible.
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Figure D.1: Plot of the energy spectrum for a non-interacting system with and
without scaling of the boundaries, and with the parametersMD = 30 and M = 150.
The condensation of states around the Fermi level for the half filled system is the
rationale for using these boundary conditions in the DMRG.

D.4 Momentum-space leads

D.4.1 Site ordering

The real-space representation for the leads provides a natural ordering of
the sites for the DMRG implementation. By contrast the momentum-space
representation of the leads does not since it contains long range hopping due
to the star configuration, where one site in the real-space part couples to all
the momentum-space sites.

Hence there is some degree of freedom in the choice of ordering since the
long range hopping anyway blurs the ‘natural’ ordering. In the implementa-
tion used here the layout has been chosen as follows: The real-space part of
the setup has been kept entirely in the left block of the DMRG, while both
leads have been put in the right block.

With this choice the implementation simplifies since once the left block
has been build the DMRG only covers the coupling of the non-interacting
leads to the left block, in which the real-space nanostructure is contained.
This is naturally only possible if the real-space part of the setup is suf-
ficiently small such that it can be represented exactly. In the real-space
setup the density-density interaction also applies between the blocks, which
complicates the implementation somewhat.
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D.4.2 Preconditioning

When solving linear systems of equations a good preconditioner is essential.
Considering a linear set of equations

Ax = b, (D.3)

the idea of preconditioning is to solve for the ‘easy’ part of the matrix A

separately, and then afterwards solve the full system.

Ax = b,⇒
P−1A = P−1b, (D.4)

such that one solves for the preconditioned matrix P−1A instead. A good
preconditioner fulfills the requirements that the condition number of the pre-
conditioned matrix is smaller than that of the original matrix such that the
preconditioned system is easier to solve, the inversion of the preconditioner
is fast, and the preconditioner should be cheap to construct. Preconditioning
is thus always a matter of a compromise.

We precondition with a Hamiltonian consisting of the separate left and
right blocks and the central sites, but without the hopping link between
them. Hence the Krylov procedure should ‘only’ take into account the link
between these two blocks. This makes the preconditioning somewhat ex-
pensive but reduces the memory requirements of the full calculation.

D.4.3 Building up the system

The sites in the momentum-space leads are not equivalent in the sense that
they have different energies and couple via different hopping matrix ele-
ments. Hence there is a choice to make regarding the labeling, namely in
which order do we label the sites within each lead. Or correspondingly, in
which order do we build up the system using the infinite lattice algorithm.

In this implementation we can switch between two different schemes.
Either we build the lead starting with the sites furthest away from the Fermi
edge, or we start with the sites closest to the Fermi edge. In both cases the
lead sites are added symmetrically around the Fermi energy, such that the
site with energy εF + ε is added right after the site with energy εF − ε. In
the two lead setup the left and right leads are alternated correspondingly.

D.5 Hardware

The DMRG method is a numerically expensive method. It can be viewed as
an iterative diagonalization routine seeking an optimally projected Hilbert
space. It consists of a number of full diagonalizations of the reduced density
matrix of size m and calculations of the ground state (in general target
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states) of the Hamiltonian matrix of size ∼ m2, where m is the number of
retained states in the DMRG. In the calculations presented here a typical
number of states is m = 800 which illustrates why the DMRG is expensive.

The two implementations of the leads, in real- and momentum-space,
have different requirements regarding memory and CPU time. Below we
present a few details of typical calculations using these two implementations
of the leads.

For both approaches the memory requirement depends on the number
of DMRG states kept at each truncation step. Typically 2-4 GB of memory
are used in a calculation, depending also on the problem at hand. Most cal-
culations presented in this thesis were performed on computers provided by
the Institut für Theorie der Kondensierten Materie1 (TKM) at Universität
Karlsruhe, and in particular using CPU grants of Dr. Peter Schmitteckert.

D.5.1 Real-space leads

As explained in Chap. 2 the real-space implementation of the leads uses a
scaling or damping of the boundaries in order to reduce the finite size effects,
and this scaling of the boundary is turned on in steps after a full unscaled
DMRG calculation. This obviously increases the calculational time needed
for the real-space approach compared to a standard non-damped DMRG
calculation.

Most of the real-space calculations where performed on the Abacus
cluster shared between the Institut für Theorie der Kondensierten Materie
(TKM) and the Institut für Theoretische Festkörperphysik2 (TFP). It is a
Linux cluster based on AMD Athlon and Opteron CPU’s. Most calculations
were performed using the ‘long’ queue which has an upper limit of 7 days,
and occasionally using the ‘verylong’ queue which is 30 days.

D.5.2 Momentum-space leads

The momentum-space representation of the leads does not rely on a scaling of
the boundary to represent the low-energy sector accurately, as the real-space
part of the setup couples directly to all momentum-space sites. Therefore
this setup is significantly faster, and can address much sharper resonances
compared to the real-space setup.

Correspondingly most calculations using the momentum-space setup
were performed using the grant of Dr. Peter Schmitteckert on the HP
XC4000 of the Scientific Supercomputing Center3 (SSC) Karlsruhe. The
XC4000 has 750 2.6 GHz AMD Opteron quad-core nodes with each 16 GB
of memory.

1http://www-tkm.physik.uni-karlsruhe.de/
2http://www-tfp.physik.uni-karlsruhe.de/
3http://www.rz.uni-karlsruhe.de/ssck/ssck.php.
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Also the HP XC6000 of the SSC Karlsruhe has been used under the
grant of Dr. Schmitteckert. The XC4000 is based on the Itanium 2 dual-
core processor, and each thin node has 12 GB of memory. The queue policy
of this machine is identical to the XC4000.
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Abstract. – In this paper we present a novel approach combining linear response theory
(Kubo) for the conductance and the Density Matrix Renormalization Group (DMRG). The
system considered is one-dimensional and consists of non-interacting tight-binding leads coupled
to an interacting nanostructure via weak links. Electrons are treated as spinless fermions and
two different correlation functions are used to evaluate the conductance. Exact diagonalization
calculations in the non-interacting limit serve as a benchmark for our combined Kubo and
DMRG approach in this limit. Including both weak and strong interaction we present DMRG
results for an extended nanostructure consisting of seven sites. For the strongly interacting
structure a simple explanation of the position of the resonances is given in terms of hard-core
particles moving freely on a lattice of reduced size.

Introduction. – During the past decade improved experimental techniques have made
production of and measurements on one-dimensional systems possible [1], and hence led to an
increasing theoretical interest in these systems. Since its formulation in 1992 [2] the Density
Matrix Renormalization Group method (DMRG) has been established as a very powerful,
quasi-exact method for numerical calculations of properties of (quasi) one-dimensional systems.

In this paper we present a new approach for calculating linear response conductance for one-
dimensional interacting nanostructures coupled to non-interacting tight-binding leads. The
method combines Kubo expressions for the conductance with numerical DMRG calculations
and is valid for arbitrary interaction strength. It facilitates a unified description of strong and
weak interactions and provides conductance directly form a transport calculation, without
relying on relations between equilibrium and transport properties.

We employ current-density and current-current correlation functions to calculate the con-
ductance and in the non-interacting case compare to exact diagonalization calculations.

In the strongly interacting limit a simple interpretation of the position of the resonances is
given in terms of freely moving hard-core particles on a reduced size lattice [3], and quantitative
comparison with numerical DMRG results shows good agreement.

c© EDP Sciences

Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2005-10377-6
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Left Lead Right LeadNanostructure
ML/2 sites

Mn2 − 1n1 − 12 n1 n2

MS sitesML/2 sites

1

Fig. 1 – One-dimensional interacting nanostructure with MS sites, coupled to non-interacting tight-
binding leads. The total system size is denoted M , the number of lead sites is ML. The interdot and
interlead hopping elements are tDot and t, respectively, while the contact between the nanostructure
and leads are via tL and tR.

Model. – We are interested in studying the effect of correlations on transport within
a microscopic model of an interacting one-dimensional nanostructure coupled to two non-
interacting tight-binding leads, as shown in fig. 1. Electrons are treated as spinless and only
nearest-neighbor interaction is considered. The corresponding Hamiltonian is

Ĥ0 = ĤNS + ĤL + ĤC, (1)

ĤNS =

n2−1∑

j=n1

Ugc
†
jcj +

n2−1∑

j=n1+1

(
− tDot(c

†
jcj−1 + c†j−1cj) + V c†jcjc

†
j−1cj−1

)
, (2)

ĤL = −t

n1−1∑

i=2

(c†i ci−1 + c†i−1ci )− t
M∑

i=n2+1

(c†i ci−1 + c†i−1ci ), (3)

ĤC = −tL(c
†
n1

cn1−1 + c†n1−1cn1
)− tR(c

†
n2

cn2−1 + c†n2−1cn2
) +

+γV V (c†n1
cn1

c†n1−1cn1−1 + c†n2
cn2

c†n2−1cn2−1). (4)

The parameter γV controls the smoothing of the interaction on the dot over the contact links
as discussed in [4], and Ug is a gate voltage on the structure. In this work we set t = tDot = 1.

Kubo expressions. – Using linear response in applied source-drain voltage, VSD(t), the
current is given by

Ĥ = Ĥ0 + δĤ, (5)

〈
J̃n(t)

〉
= J̄ − i

∫ t

−∞

dt′
〈
ψ0

∣
∣[J̃n(t), δH̃(t

′)]
∣
∣ψ0

〉
, (6)

J̃n(t) = −itn
[
c̃†n(t)c̃n−1(t)− c̃†n−1(t)c̃n(t)

]
, (7)

where Ĥ0 is the Hamiltonian in eq. (1), the applied voltage perturbation is δĤ(t) = VSD(t)N̂ ,

Ã(t) = eiĤ0tÂe−iĤ0t denotes the interaction picture time evolution of the operator Â, and
∣
∣ψ0

〉
denotes the ground state. Note that in this approach Ã(t) contains all correlations of

the unbiased structure, since we apply it to the quasi-exact ground state given by the DMRG
procedure. The number operator is taken as a symmetric combination of the left and right
lead operators, N̂ = 1

2
(N̂L − N̂R), and J̄ is the equilibrium current included for completeness

and henceforth neglected in all numerical calculations.

The Kubo conductance in the DC limit, g ≡
e2

h

〈
J̃
〉
/VSD, can be expressed in terms of two
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different correlators,

gJjN = −
e2

h

〈
ψ0

∣
∣Ĵnj

4πiη

(Ĥ0 − E0)2 + η2
N̂

∣
∣ψ0

〉
, (8)

gJJ =
e2

h

〈
ψ0

∣
∣Ĵn1

8πη(Ĥ0 − E0)
[
(Ĥ0 − E0)2 + η2

]2
Ĵn2

∣
∣ψ0

〉
, (9)

where the positions n1 and n2 are defined in fig. 1. Analogous Kubo expressions were used
by Louis and Gros in [5], where quantum Monte Carlo calculations for the density-density
correlator were performed.

Damped boundary conditions. – To improve the finite-size scaling and to facilitate the
use of sufficiently short leads we use exponentially damped boundary conditions, decreasing
the hopping elements towards the end of the leads exponentially as shown for the right lead
in eq. 10(1),

[−t, · · · ,−t,−t,−t, · · · ,−t
︸ ︷︷ ︸

MD

] → [−t, · · · ,−t,−td,−td2, · · · ,−tdMD−1,−tdMD

︸ ︷︷ ︸

MD

] , (10)

where d < 1. The improvement of the finite-size scaling relies on two properties of the DBCs:
1) They allow for use of a smaller η and 2) serve as a particle bath for the nanostructure.
The first property is caused by the introduction of exponentially small energy scales in the
system thus reducing the finite-size level splitting at the Fermi energy at half-filling. The
second property can be understood from the fact that the energy cost of adding or removing a
particle from the damped region is of the order of the exponentially small hopping element(2).

The DBCs introduce two more parameters in the model, the number of damped bonds
MD and the damping factor d, and these must take values such that physical quantities do
not depend sensitively on the particular choice.

Numerical calculations. – Before actual numerical calculations can be performed the
parameters of the model, MD, d, and η, must be determined. This is done using exact
diagonalization calculations for the non-interacting systems, specifically the resonant value
at Ug = 0.(3) For fixed MD we do indeed find a range of d values that produce essentially
identical physical results, indicating the range of validity of the DBCs. Additionally we find
that the actual value of MD is not significant (for reasonably large values) as long as the
corresponding value of d is tuned such that the damping at the edge reaches values of the
same order of magnitude. The leads used are sufficiently long to keep the damped region
separated from the nanostructure, thus allowing Friedel oscillations at the structure edge to
decay before reaching the damped region.

The magnitude of the parameter η is bounded by physical arguments; from below by the
fact that it should be larger than the finite-size level splitting to allow transport, and from

(1)Modified BCs in connection with DMRG were introduced by Vekic and White in [6] using soft boundary
conditions to reduce finite-size effects. Note that exponential damping corresponds to the hopping Hamiltonian
in the Numerical Renormalization Group, which models the logarithmic discretization.
(2)In principle properties 1) and 2) of the DBCs could be obtained by using longer non-damped leads.
However, these leads would have to be exponentially long making such a direct approach impossible.
(3)Considering structures consisting of an odd number of sites has the advantage that the central resonance
(by symmetry) remains at Ug = 0 for half-filled leads. Due to the bath property of the DBCs it is safe to
assume that half-filling is maintained in the parts of the leads that are close to the nanostructure. In contrast,
the strongly damped regions act like particle baths and therefore cannot maintain half-filling for non-zero
external potential.
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above by the broadening of physical results by any finite η, and should thus be much smaller
than the width of the resonances we wish to resolve. It is important to note that η is an
inherent property of any transport calculation and can only be avoided if one finds a way to
obtain transport properties from equilibrium properties.
The conductances in eqs. (8) and (9) are given in terms of ground-state correlators and

hence DMRG is directly applicable. To evaluate the correlators we use the correction vector
DMRG [7–9] in the zero frequency limit. Calculating, e.g., the correlator in eq. (9) is done by
formulating the linear problems,

1

Ĥ0 − E0 + iη
Ĵnj

∣
∣ψ0

〉
=

∣
∣φj

〉
⇒ Ĵnj

∣
∣ψ0

〉
=

[
Ĥ0 − E0 + iη

]∣
∣φj

〉
, (11)

which can be solved for
∣
∣φj

〉
by a linear solver. Having solved for the correction vector

∣
∣φj

〉

the conductance is found as the vector overlap,

∣
∣φj

〉
=

∣
∣φR

j

〉
+ i

∣
∣φI

j

〉
, (12)

gJJ = −
8πe2

h

〈
φI

1

∣
∣φR

2

〉
. (13)

In our DMRG calculations we target apart from the ground state also the real and imaginary
parts of the two correction vectors,

∣
∣φ1

〉
and

∣
∣φ2

〉
, as well as the states N̂

∣
∣ψ0

〉
and Ĵn1,2

∣
∣ψ0

〉

to ensure that the DMRG basis is suitable for describing the conductance accurately [8, 9].
It should be mentioned that the damped boundary conditions make the convergence rate in

numerical calculations much slower. In addition any finite external gate voltage, Ug, changes
the particle number in the structure and the excess particles come from the bath property
of the DBCs. We therefore face the problem that the damping should be sufficiently strong
to provide a reasonable particle bath but at the same time a strong damping decreases the
coupling of the highly damped region to the rest of the system. To remedy the slow convergence
in the DMRG calculations we turn on the damping in steps and perform several finite system
DMRG sweeps for each such damping step. In other words, we perform a complete finite
lattice calculation employing typically 11 sweeps and then initiate the scaling sweeps. This
allows DMRG to gradually optimize the basis to include the damping in the leads and provides
a more gradual decoupling of the damped regions from the rest of the system, thus improving
the convergence rate at the cost of more DMRG iterations.
Nevertheless, the resolvent equations, eq. (11), are still ill-conditioned and standard solvers

like the Conjugate Gradient Method do not converge. We use instead a preconditioned
Davidson-type solver similar to Ramasesha [10] modified with a Gauss-Seidel enhanced block
diagonal preconditioner. The DMRG calculations presented in fig. 2 were done using up to
m = 1200 states. In our DMRG implementation we do not fix the number of states per block
to be m but rather fix the dimension of the target space to be at least m2. In the calculations
presented this corresponds to an increase of block states of typically 15%–30%.

Results. – Here we present DMRG and (in the non-interacting limit) exact diagonal-
ization calculations for a single resonant level, fig. 2(a), and a nanostructure consisting of
seven sites coupled symmetrically to two non-interacting leads. For the extended structure
we present results in the non-interacting limit, fig. 2(b), and for weak and strong interaction,
fig. 2(c) and (d).
The spinless single resonant level is generically non-interacting and serves as a testing

ground for the approach. The exact result for the conductance in the symmetrically coupled
case can be shown to be a Lorentzian of full width 4t′2 at half-maximum, where t′ = tL = tR.
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(a) Single resonant level, MS = 1 and M =
102. f ’s denote exact diagonalization results, g’s
denote DMRG results, and L denotes the exact
Lorentzian in the infinite lead limit. The inset
shows an enlargement of the resonance peak.
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(b) Seven-site nanostructure, MS = 7 and M =
150, in the non-interacting limit, V = 0.0. Ex-
act diagonalization calculation.
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(c) Seven-site nanostructure, MS = 7 and M =
150, in the Luttinger-liquid regime, V = 1.0.
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(d) Seven-site nanostructure, MS = 7 and M =
150, in the charge density wave regime, V = 5.0.

Fig. 2 – Conductance, g, and number of particles on the dot, ND, vs. external potential Ug for a
single resonant level and for an extended nanostructure consisting of seven sites. gJJ denotes the
current-current correlator, and gJjN denotes the current-density correlator. The left/right contact
hopping elements are tL/R = 0.5 and the parameters of the DBCs are MD = 30 and d = 0.8. For
the calculations above we use η = 1/MS . For the interacting spectra notice the offset of resonance
positions of the order V as compared to the non-interacting case. The interaction on the nanostructure
is smoothed over the contacts with γV = 0.5.

In fig. 2(a) we show exact diagonalization and DMRG calculations for the single resonant
level and the two sets are virtually indistinguishable. This verifies that the truncation error
introduced by the DMRG is negligible. Furthermore, we have plotted the exact Lorentzian
result, and the agreement between the three curves is very good, demonstrating the accuracy
of our combined Kubo and DMRG approach.

There is a systematic difference between the current-current and the current-density cor-
relators, specifically close to resonances the current-density correlator generally gives better
results. This is due to the additional energy-dependent broadening given by Ĥ0 − E0 in
the current-current correlator. The opposite is true in the tails where the current-current
correlator is more reliable since it is less sensitive to changes of the particle number.
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Table I – Table of peak positions for the MS = 7 site structure with interaction V = 5, 20, 30, as pre-
dicted by the reduced lattice (RL) model, by exact diagonalization (ED) of the isolated nanostructure,
and as found from the conductance peaks in our DMRG calculations. The RL prediction for ND = 3
is not expected to be accurate since the nanostructure is in a localized charge-density-wave–like state.
Except for the RL prediction for V = 5, ND = 3, all predictions are correct to linear order in t/V .

V 5 20 30

ND 1 2 3 1 2 3 1 2 3

UND−1→ND
g RL 6.73 5.50 2.76 21.73 20.50 17.76 31.73 30.50 27.76

UND−1→ND
g ED 6.77 5.88 3.85 21.75 20.63 18.03 31.74 30.59 27.94

UND−1→ND
g DMRG 6.76 5.79 3.66 21.74 20.59 17.97 31.74 30.60 27.95

In numerical calculations the parameter η is always finite making the expected form of
the conductance peaks that of an area-normalized Lorentzian (LA) of half-width η convoluted
with the “bare” physical result. Assuming as a first approximation that the latter is a height-
normalized Lorentzian (LH) of width Γ, the expression for the expected numerical results is
of the general form

(LA ∗ LH)(x) =
Γ

2

η + Γ/2

(x − x0)2 + (η + Γ/2)2
. (14)

To leading order in η the conductance at the resonant level is then given by gres ≈ 1− 2η/Γ,
which demonstrates that one needs small η to reach the unitary limit, gres = 1. However, η is
known from the input and Γ can be extracted from the results. Thus a conductance value on
resonance of 1−2η/Γ is explained entirely by the broadening by the finite leads and therefore
suggests that infinite leads in this case would yield the unitary limit. Our calculations indicate
that the peak width is only slightly affected by the interaction on the nanostructure, as long
as the nanostructure remains in the Luttinger-liquid regime. However, once the structure is
driven into the charge density wave regime the peak width decreases rapidly. A more detailed
study of the resonance shapes is considered as future work.
The position of the resonances can be described by the addition spectrum,

UND−1→ND

g = END−1

0
− END

0
, (15)

where END

0
is the energy of the isolated nanostructure occupied by ND particles. In the large

interaction limit the kinetic energy of the particles can be approximated by freely moving
fermions on an effective lattice of size M∗

S = MS − ND. In this approximation one describes
the interacting fermions by effective hard-core particles of the size of the interaction range,
compare [3, 11]. Thus eq. (15) can be expressed as

UND−1→ND

g = V + 2t

(
ND∑

n=1

cos

(
πn

MS − ND

)

−

ND−1∑

n=1

cos

(
πn

MS − (ND − 1)

))

, (16)

where ND should be small enough that the nanostructure is still in a delocalized state.
In an effective charging model the additional splitting of the levels due to the interaction

is linear in the charging interaction V . By contrast, in our microscopic model the interaction
leads to an overall offset for the non-central peaks, while their mutual splitting is governed
by the kinetic energy, ∼ t.
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In table I we show a comparison of resonance positions as predicted by the reduced-
lattice (RL) model in eq. (16), as predicted by exact diagonalization (ED) of the isolated
nanostructure, and resonances found in our DMRG calculations for interaction strengths V =
5, 20, 30. The position of the outermost resonance from 0 → 1 particle fits fairly well for
both predictions, while the next ones deviate somewhat. The RL prediction for the transition
2 → 3 is not expected to be accurate since ND = 3 is a localized charge-density-wave–like
state. All exact diagonalization predictions are correct to lowest order in t/V as expected.

Conclusion. – In this work we have presented a new approach for linear conductance
calculations of interacting one-dimensional nanostructures, combining linear response for con-
ductance and DMRG. We have benchmarked this new approach against exact diagonalization
calculations in the non-interacting case and found excellent agreement, which serves as a real
test for the real space DMRG. For the resonant level we also compared our results to the exact
Lorentzian result, and found excellent agreement.

For the interacting case we have presented conductance curves for a seven-site nanostruc-
ture in both the Luttinger-liquid (V = 1) and the charge density wave (V = 5) regimes, thus
demonstrating the versatility of our approach. We find the largest conductance when the
particle number in the structure fluctuates, in agreement with physical intuition.

In the large interaction limit we have shown that a simple picture based on effective hard-
core particles moving freely on a reduced size lattice describes the position of the resonances
quite well. However, the peak width is strongly decreased by strong interaction.

We expect that further finetuning of the method and numerical parameters will lead to sig-
nificantly more precise results facilitating calculations for more complicated structures and al-
low to quantitatively describe resonance peaks for strongly interacting and extended structures.
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Strong repulsive interactions within a one-dimensional Fermi system in a two-probe configuration normally

lead to a reduced off-resonance conductance. We show that if the repulsive interaction extends to the contact

regions, a strong increase of the conductance may occur, even for systems where one would expect to find a

reduced conductance. An essential ingredient in our calculations is a momentum-space representation of the

leads, which allows a high energy resolution. Furthermore, we demonstrate that these results are independent

of the high-energy cutoff and that the relevant scale is set by the Fermi velocity.
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I. INTRODUCTION

Constructing a transport theory for strongly correlated

systems is one of the major challenges of condensed matter

physics. Even though many interesting ideas have been pro-

posed during recent years, no consensus has yet emerged as

to the general validity and applicability of the various

schemes. With this state of affairs, it is of high importance to

establish reliable benchmarks for simple model systems,

which then can be used to validate new approaches.

Recently, we presented a method for calculating linear

response conductance1 using the density matrix renormaliza-

tion group �DMRG� method.2 A major challenge in this work

consisted in minimizing finite-size effects, which was

achieved via modified boundary conditions. In this paper, we

circumvent these technical problems by reformulating the

leads in momentum space. This approach enables us to �i�
reach a much higher energy resolution ��10−5� and �ii� al-

lows for a greater flexibility in the choice of discretization

schemes.

In two recent papers, Mehta and Andrei3,4 presented non-

equilibrium Bethe ansatz results for the interacting resonant-

level model �IRLM�, where a single spinless level is coupled

to a left and a right lead both via a tunneling and a density-

density interaction term. However, their work currently ex-

cludes the regime of resonant tunneling—i.e., the regime

where the conductance is close to unity.5

In this work we study the linear conductance of the IRLM

on a lattice to provide a benchmark for the universal proper-

ties of the model. In addition, we present results for an ex-

tended model, where the central region consists of three

sites, with a similar interaction as in the IRLM model. As we

will show, this model displays the same qualitative behavior

as the IRLM. It should be noted that despite its simplicity,

the IRLM captures much of the physics of transport through

an arbitrary interacting nanostructure provided that only a

single level is close to the Fermi energy of the leads, with all

other levels well separated and outside the voltage window

within which the transport takes place. For perfect coupling,

the IRLM model corresponds to the one-dimensional model

studied by Vasseur et al.6 and Molina et al.,7 obtained by

restricting their nanostructure to a single site. Using the em-

bedding method, they showed that smoothing the ramp of

interaction for perfect contacts can compensate for the de-

crease of transmission due to interaction on the nanostruc-

ture. Here we go far beyond the energy resolution attained in

previous work and show that interaction on the contact links

can lead to strong renormalization effects, enhancing trans-

port beyond the noninteracting system.

II. METHOD AND MODELS

We use the DMRG method to evaluate the linear response

conductance of the interacting nanostructure. In previous

work,1 the leads were modeled in real space by nearest-

neighbor hopping chains. While simple to implement, there

are several drawbacks of this method, most prominently the

need for “damped boundary conditions” and the resulting

problem of trapping of fermions on the Wilson chain �the

damped region�.1

In the present work, we introduce a setup where the leads

are described in momentum space. Specifically, a short part

of the lead close to the nanostructure is represented in real

space, accounting for local �i.e., high-energy� physics, while

farther away from the nanostructure the lead is represented in

momentum space; see Fig. 1. Since the low-energy modes of

the momentum leads are now directly coupled to the ex-

tended structure �the nanostructure plus additional real-space

Nanostructure, MS sites

Optional real space sites, MAdd sites

Left Lead Right LeadME = MS + MAdd

ME

tDottDot tDot

VVV γVγV

tktk t tt′ t′

1

FIG. 1. �Color online� Schematics of the nanostructure extended

by real-space sites and attached to momentum-space leads.
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sites�, as illustrated in Fig. 1, the trapping of fermions on the

low-energy sites1 is avoided and no scaling sweeps are

needed. This enables much higher energy resolution, and in

the current work we resolve resonances of widths O�10−5�.
By virtue of the momentum representation of the leads,

the discretization scheme can be chosen arbitrarily to suit the

problem at hand. In the present work, we use a logarithmic

discretization to cover a large energy range, while switching

to a linear discretization for the lowest-energy states in order

to describe Fermi-surface physics accurately. The linear dis-

cretization on the low-energy scale allows for a better repre-

sentation of the low-energy physics relevant for transport

properties—i.e., excitations created by �.

The models considered in this work are the IRLM and the

natural extension of this model to resonant linear chains,

defined by the Hamiltonians

HRS = �
j�S

�gĉ j
†
ĉ j − �

j,j−1�SE

�t jĉ j
†
ĉ j−1 + H.c.�

+ �
j,j−1�SE

V j�n̂ j −
1

2
��n̂ j−1 −

1

2
� , �1�

HMS = �
i�L,R

�iĉi
†
ĉi, �2�

HT = − ��
k�L

tkĉk
†
ĉ1 + �

k�R

tkĉk
†
ĉME� + H.c., �3�

where ĉ
�

† and ĉ� are the �spinless� fermionic creation and

annihilation operators at site �, n̂�= ĉ
�

†ĉ�. HRS, HMS, and HT

denote real space, momentum space, and tunneling between

real- and momentum-space Hamiltonians, respectively. The

symbols S and SE denote the nanostructure and the extended

nanostructure �the full real-space chain�, respectively. The

indices 1 and ME denote the first and last sites in SE. The

general setup and the specific values of the hopping matrix

elements t j and the interactions V j are indicated in Fig. 1, and

note specifically the interactions on the contact links, �V.

The coupling tk of the extended real-space structure to the

momentum leads is chosen in such a way that in the case of

a cosine band it corresponds to a nearest-neighbor hopping

chain in real space with a hopping parameter of t. In the

following we measure all energies in units of t=1.

For a single-site nanostructure and �=1 this model re-

duces to the IRLM. The properties of the leads are defined by

the band structure �k, which can take any form. In this work

we use either the cosine band, �k=−2 cos�k�, or the linear

band, �k=2k. D is a cutoff parameter such that the Fermi

velocity vF=2 is kept constant in all work presented here,

and the band ranges between energies −D and D. Throughout

this work we use the notion of “contact interaction” for in-

teraction on the link between the nanostructure and the leads.

III. RESULTS

The aim of this work is to study the effect of contact

interaction. It is known from previous work1 that strong re-

pulsive interactions within the nanostructure lead to suppres-

sion of the transport off resonance due to the formation of a

density-wave-like state on the dot.

In Fig. 2, we show results for the conductance versus gate

potential for different couplings to the leads and different

contact interactions for the IRLM ��=1�. The calculations

have been performed with typically 130 sites in total, ME

=10 real-space sites and 120 momentum-space sites. Due to

the symmetry of the band, we use a discretization that is

symmetric around �F=0, and further use identical discretiza-

tion of the two leads. To represent the “large” energy span in

the band we use 20 logarithmically scaled sites, and thereaf-

ter use 10 linearly spaced sites to represent the low-energy
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FIG. 2. �Color online� Conductance versus gate potential for the interacting resonant-level model for a contact hopping of �a� t�=0.01 and

�b� t�=0.03 and contact interaction ranging from zero to 25. To each set of DMRG data, a Lorentzian of half width 2w has been added as

a guide to the eye. The leads are described with a cosine band between ±2 such that the Fermi velocity is vF=2. In contrast to intradot

interaction, the contact interaction enhances the conductance and shows a nonmonotonic behavior versus contact interaction.
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scale correctly. In the DMRG calculations presented we used

at least 1300 states per block and 10 finite lattice sweeps. To

each set of DMRG results in Fig. 2 is added a Lorentzian of

half width 2w as a guide to the eye.

As the interaction is turned up the width of the resonance

is increased far beyond the noninteracting result, up to an

order of magnitude larger; e.g., for t�=0.01 and V=1 the

resonance width is increased by a factor of 10. However, for

a larger interaction V�vF=2, transport is suppressed, and

for very large interactions the width even becomes smaller

than the noninteracting resonance. A similar nonmonotonic

behavior is observed by Borda et al.8 using a perturbative

calculation and is opposite to the one originally reported by

Mehta and Andrei,3 which, however, has been corrected in an

erratum.5 Where preceding work3–5,8 failed to reach the uni-

tary limit, we demonstrate that indeed the resonant value

remains unitary.

Furthermore, by changing the bandwidth D for linear

bands we have verified that the relevant energy scale is the

Fermi velocity vF of the leads, while the bandwidth D does

not influence the conductance, as long as D�V; compare

Fig. 5.

Borda et al.8 conclude in their work that “in the case of

repulsive interaction the site next to the occupied d level is

empty and thus that electron can easily jump to the conduc-

tion band,” while for attractive interaction fermions accumu-

late close to the impurity. From that reasoning we would

expect an asymmetric conductance curve depending on

whether the impurity is filled or depleted. However, this

would violate particle-hole symmetry of the model. In Fig. 3,

we plot the site occupation nd of the resonant level and the

averaged site occupation nc of the left and right real-space

sites attached to the level. The occupations are plotted versus

the contact link interaction for the interacting resonant-level

model and for two different gate voltages. The site occupa-

tion of the resonant level and the neighboring sites are both

enhanced by the repulsive interaction as long as interaction is

in the range that enhances the conductance. For stronger in-

teraction the site occupancy of the resonant level is indeed

reduced; however, this is the regime where the conductance

is reduced. We would like to remark that in the noninteract-

ing case and for a weak contact, t��1, the site occupations

of the real-space sites in the leads change only slightly with

gate voltage and are all very close to half filling. Thus it

seems that the densities of the hybridizing lead levels are not

the determining quantity for the interaction-induced changes

of transport properties.

The strong renormalization of the resonance width and the

nonmonotonic behavior is, however, not specific to the

IRLM. In Fig. 4, we show results for the center peak of a

three-site nanostructure. Without a contact interaction we

find that the intradot interaction V=2.0=4tdot leads to a sup-

pression of the transport in agreement with previous results.1

As in the single-level case already a small contact interaction

increases again the width of the resonance at zero gate po-

tential. The enhancement of the conductance by a contact

interaction is stronger than the corresponding suppression by

the intradot interaction. Therefore, we conjecture that the en-

hancement of conductance due to the contact interaction is a

universal feature, which should also be present in other sys-

tems. These findings may also be relevant for disordered

structures, where repulsive interaction was found to enhance

transport in the case of strong disorder.9

Finally, we have considered a non-particle-hole-

symmetric IRLM model to address the question of parameter

renormalization versus bandwidth cutoff. The non-particle-

hole-symmetric model is defined by replacing the �n̂ j −
1

2
�

terms in HRS by n̂ j. The results are shown in Fig. 5. It is

clearly seen from the calculation that varying the cutoff over

an order of magnitude does not change the resonance, pro-

viding the interaction is not cut off by the band. Neither the

position nor the width of the resonance peak is influenced by

the change of the cutoff D, which is in contrast to the the

renormalization group flow that follows from the nonequilib-

rium Bethe ansatz.3 There, all transport quantities depend on

the cutoff D and the conductance changes with the cutoff.

While it is often difficult to compare a field theoretical

model, like the IRLM of Mehta and Andrei, with a lattice
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FIG. 3. �Color online� Site occupation nd of the resonant level

and nc of the real-space sites attached to the level vs the link inter-

action in the IRLM for t�=0.01 and two different gate voltages.
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FIG. 4. �Color online� Conductance versus gate potential for a

resonant three site chain. To each set of DMRG results a Lorentzian

of half width 2w has been added as a guide to the eye. The leads are

described by a cosine band between ±2 such that vF=2. The inter-

dot interaction suppresses the transport while the contact interaction

is seen to enhance the transport.
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model, we can at least conclude that the RG flow found in

their work is absent in our model with regularized �tight

binding� leads and that the relevant energy scale is the Fermi

velocity.

IV. SUMMARY

A normal paradigm in transport calculations is to make a

principal division between transport region, the nanostruc-

ture or “molecule,” and leads, where all correlation effects

are excluded from the leads.

In this work, we have investigated the influence of an

interaction on the contact between a nanostructure and the

leads in a simple tight-binding model. Using the nonpertur-

bative DMRG method to evaluate the linear conductance we

have demonstrated that a contact interaction significantly in-

fluences the transport properties. A repulsive interaction

smaller or comparable to the Fermi velocity in the leads en-

hances the conductance, while a large interaction leads to a

suppression of the conductance. Our work shows that even a

slight spread of the interaction on the contacts influences the

transport strongly. This demonstrates that particular care

should be taken in treating the contacts correctly, especially

regarding the interaction.
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