28 research outputs found

    Analytical and Experimental Analysis of a Free Link in Contact with a Granular Medium

    Get PDF
    In this study, the experimental and the simulation results for a planar free link impacting a granular medium are analyzed. The resistance force of the granular medium on the body from the moment of the impact until the body stops is very important. Horizontal and vertical static resistance forces developed by theoretical and empirical approaches are considered. The penetrating depth of the impacting end of the free link increases with the increase of the initial impacting velocity. We define the stopping time as the time interval from the moment of impact until the vertical velocity of the link end is zero. The stopping time of the end decreases as the initial velocity increases. The faster the end of the link impacts the surface of the granular medium, the sooner it will come to a stop. This phenomenon involves how rapidly a free link strikes the granular medium and how it slows down upon contact

    Impact of a Multiple Pendulum with a Non-Linear Contact Force

    No full text
    This article presents a method to solve the impact of a kinematic chain in terms of a non-linear contact force. The nonlinear contact force has different expressions for elastic compression, elasto-plastic compression, and elastic restitution. Lagrange equations of motion are used to obtain the non-linear equations of motion with friction for the collision period. The kinetic energy during the impact is compared with the pre-impact kinetic energy. During the impact of a double pendulum the kinetic energy of the non-impacting link is increasing and the total kinetic energy of the impacting link is decreasing

    Mechanisms and robots analysis with MATLAB / by Dan B. Marghitu.

    No full text
    Includes bibliographical references (p. 475 - 476) and index.book fair 2012xi, 479 p. :This book provides a thorough, rigorous presentation of kinematics and dynamics using MATLAB. Each chapter includes an introduction, a step-by-step presentation and sample problems. The book contains over one hundred illustrations

    Mechanical engineer's handbook

    No full text
    The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechani

    Machine design analysis with MATLAB

    No full text

    Impact Behavior of a Rotating Rigid Body with Impact and Viscous Friction

    No full text
    The impact between a rotating link and a solid flat surface is considered. For the impact, we consider three distinct periods: elastic period, elastoplastic period, and restitution period. A Hertzian contact force is considered for the elastic period. Nonlinear contact forces developed from finite element analysis are used for the remaining two phases. The tangential effect is taken into account considering a friction force that combines the Coulomb dry friction model and a viscous friction function of velocity. Simulations results are obtained for different friction parameters. An experimental setup was designed to measure the contact time during impact. The experimental and simulation results are compared for different lengths of the link

    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB

    No full text
    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and design of complex mechanicaldevices and mechanisms Includes comprehensive MATLAB programs for the example problems Advanced Dynamics: Analytical and Numerical Calculations with MATLAB is an ideal book for senior undergraduate and first year graduate students in mechanical engineering

    Experimental and Simulation Analysis for the Impact of a Two-Link Chain with Granular Matter

    No full text
    The resistance force of the granular matter is modeled as a linear superposition of a static (quadratic depth-dependent) resistance force and a dynamic (quadratic velocity-dependent) frictional force. The impact is defined from the moment the end point of the system comes in contact with the granular matter surface until the vertical linear velocity of the end point is zero. The variables of interest are the final depth at the end of the penetration phase and the stopping time. The results for a two-link kinematic chain with two points of contact were compared to the results obtained by applying the resistance force formulation developed to corresponding CAD simulation models. The results revealed that the final displacement increases with initial velocity, while the stopping time decreases. The sensitivity to the initial velocity was studied and an improvement to the resistance force formulated as a result. A series of expressions are proposed for the resistance force coefficients

    Analytical elements of mechanisms

    No full text
    corecore