8 research outputs found

    fNIRS-Based Clinical Assessment of ADHD Children

    Get PDF
    While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD), an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS), which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis for young ADHD children. In search of a stable and clinically applicable biological marker, here in this chapter, we first discuss a plausible solution to enable the objective monitoring of the acute effects of ADHD medications at the group level. Subsequently, we discuss our successful visualization of differential neural substrates between ADHD and healthy control children for inhibitory control at the individual level, which reached an optimized classification parameter with a value of 85% and a sensitivity of 90%. These findings led us to postulate that fNIRS-based examination would allow the identification of an objective neuro-functional biomarker to diagnose and determine the appropriate treatment for ADHD children. We believe that such a novel technical application would evoke wide interest from neuroimaging researchers

    Transient Exposure to Ethylene Stimulates Cell Division and Alters the Fate and Polarity of Hypocotyl Epidermal Cells

    No full text
    After transient exposure to the gaseous hormone ethylene, dark-grown cucumber (Cucumis sativus) hypocotyls developed unusual features. Upon ethylene's removal, the developing epidermis showed significant increases in cell division rates, producing an abundance of guard cells and trichomes. These responses to ethylene depended on the stage of development at the time of ethylene exposure. In the upper region of the hypocotyl, where cells were least differentiated at the onset of ethylene treatment, complex, multicellular protuberances formed. Further down the hypocotyl, where stomata and trichomes were beginning to develop at the onset of ethylene exposure, an increase in the number of stomata and trichomes was observed. Stomatal complexes developing after the ethylene treatment had a significant increase in the number of stomatal subsidiary cells and the number of cells per trichome increased. Analysis of division patterns in stomatal complexes indicated that exposure to ethylene either suspended or altered cell fate. Ethylene also altered cell division polarity, resulting in aberrant stomatal complexes and branched trichomes. To our knowledge, the results of this study demonstrate for the first time that transient treatment with physiological concentrations of ethylene can alter cell fate and increase the propensity of cells to divide

    Ethylene Stimulates Endoreduplication But Inhibits Cytokinesis in Cucumber Hypocotyl Epidermis

    No full text
    The effects of ethylene on cell division are generally considered inhibitory. In this study, we demonstrate that transient ethylene exposure, while suppressing cytokinesis, stimulates DNA synthesis. We monitored DNA synthesis and cytokinesis in the epidermis of cucumber (Cucumis sativus) hypocotyls, an organ whose post-germination development involves strictly limited cell division. During exposure to ethylene, DNA synthesis, assessed by the incorporation of the thymidine homolog 5-bromo-2′-deoxyuridine, was detected in 20% of the epidermal cells, whereas DNA synthesis was nearly undetectable in normal air. Cytofluorometric analysis of nuclei in affected cells showed an up to 8-fold increase in DNA content. During this time, new cell plate formation was not detected. However, shortly after ethylene was removed, DNA content was rapidly restored to 2C (diploid) levels in all cells, and new cell plate formation dramatically increased. These results demonstrate that ethylene promotes DNA synthesis and its endoreduplication but inhibits cytokinesis, thereby maintaining some cells in G(2) phase

    Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS

    Get PDF
    While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD), an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS), which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs) and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level

    Acute neuropharmacological effects of atomoxetine on inhibitory control in ADHD children: A fNIRS study

    Get PDF
    The object of the current study is to explore the neural substrate for effects of atomoxetine (ATX) on inhibitory control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS). We monitored the oxy-hemoglobin signal changes of sixteen ADHD children (6–14 years old) performing a go/no-go task before and 1.5 h after ATX or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Sixteen age- and gender-matched normal controls without ATX administration were also monitored. In the control subjects, the go/no-go task recruited the right inferior and middle prefrontal gyri (IFG/MFG), and this activation was absent in pre-medicated ADHD children. The reduction of right IFG/MFG activation was acutely normalized after ATX administration but not placebo administration in ADHD children. These results are reminiscent of the neuropharmacological effects of methylphenidate to up-regulate reduced right IFG/MFG function in ADHD children during inhibitory tasks. As with methylphenidate, activation in the IFG/MFG could serve as an objective neuro-functional biomarker to indicate the effects of ATX on inhibitory control in ADHD children. This promising technique will enhance early clinical diagnosis and treatment of ADHD in children, especially in those with a hyperactivity/impulsivity phenotype

    Efficacy of Combination Therapy with Lenvatinib and Radioactive Iodine in Thyroid Cancer Preclinical Model

    No full text
    Patients with differentiated thyroid cancer (DTC) usually have good prognosis, while those with advanced disease have poor clinical outcomes. This study aimed to investigate the antitumor effects of combination therapy with lenvatinib and 131I (CTLI) using three different types of DTC cell lines with different profiling of sodium iodide symporter (NIS) status. The radioiodine accumulation study revealed a significantly increased radioiodine uptake in K1-NIS cells after lenvatinib treatment, while there was almost no uptake in K1 and FTC-133 cells. However, lenvatinib administration before radioiodine treatment decreased radioiodine uptake of K1-NIS xenograft tumor in the in vivo imaging study. CTLI synergistically inhibited colony formation and DTC cell migration, especially in K1-NIS cells. Finally, 131I treatment followed by lenvatinib administration significantly inhibited tumor growth of the NIS-expressing thyroid cancer xenograft model. These results provide important clinical implications for the combined therapy that lenvatinib should be administered after 131I treatment to maximize the treatment efficacy. Our synergistic treatment effects by CTLI suggested its effectiveness for RAI-avid thyroid cancer, which retains NIS function. This potential combination therapy suggests a powerful and tolerable new therapeutic strategy for advanced thyroid cancer

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to < 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of & GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P < 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo
    corecore