32 research outputs found

    Phase-related patterns of tidal sand waves and benthic organisms: field observations and idealised modelling

    Get PDF
    Observations from the field show that the spatial distribution of benthic organisms is strongly correlated to the morphological structure of tidal sand waves. In particular the troughs of sand waves are typified by a large benthic community, in contrast to the crest. In this paper, we present an idealised process-based model to study these patterns of biota and sand waves. Our model results agree with the observations that these phase-related patterns can arise on the seabed. Moreover, we show that local topography disturbances may lead to spatial patterns of both sand waves and biomass

    Modelling the two-way coupling of tidal sand waves and benthic organisms:a linear stability approach

    Get PDF
    We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spatial and temporal environmental variations on the distribution of these organisms. Specifically, we include two coupling processes: the effect of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress variations on the biological carrying capacity. We discuss the differences and similarities between the methodology used in this work and that from ‘traditional’ (morphodynamics only) stability modelling studies. Here, we end up with a 2×2 linear eigenvalue problem, which leads to two distinct eigenmodes for each topographic wave number. These eigenmodes control the growth and migration properties of both sand waves and benthic organisms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a certain model outcome does not necessarily have to be dominant in the field. Therefore, we also analysed the temporal evolution of an initial bed hump (without perturbing biomass) and of an initial biomass hump (without perturbing topography). It turns out that these local disturbances may trigger the combined growth of sand waves and spatially varying biomass patterns. Moreover, the results reveal that the autonomous benthic growth significantly influences the growth rate of sand waves. Finally, we show that biomass maxima tend to concentrate in the region around the trough and lee side slope of sand waves, which corresponds to observations in the field

    The feedbacks among tidal sand waves, benthic organisms and sediment sorting processes

    Get PDF
    Sand waves are rhythmic features on the bottom of shallow seas. Their shape drives the habitat selection of benthic organisms and contributes to the redistribution of sediments. In turn, benthic activity and the sorting of sediments affect the dimensions and dynamics of sand waves. These complex interactions among sand waves, benthic organisms and sediment sorting processes are investigated in this thesis

    Nonlinear dynamics of sand waves in sediment scarce environments

    No full text
    Field observations in the Dover Strait (Le Bot and Trentesaux, 2004) show sandy bed patterns in an environment where sand is scarce. Their morphological features closely resemble tidal sand waves, however, these type of bed forms are characterized by a crest-to-crest spacing which is larger than the wavelength of sand waves in the same surveyed area where sand is abundant. Based on stability theory, Porcile et al (2017) developed a morphodynamic model that was able to explain these features. They found that where the motionless substratum is exposed due to the growth of dunes, the lack of sand affects sediment transport, and consequently the morphology of the bed patterns. Their results also showed that the continuous growth leads to a lengthening of the dunes, and an increasing irregularity of the spacing. The found that their results were supported by the field observations. Since the model by Porcile et al (2017) is partly based on the perturbation principle, the results are only valid for small amplitude patterns. To further understand the nonlinear behaviour of these sand starved dunes (e.g. shape, height), we here apply the fully numerical sand wave model by Damveld et al (2020). We extend this model by accounting for the presence of a hard substrate just below a thin layer of sand. Moreover, we start with a randomly perturbed bed pattern to give the morphodynamic system the freedom of self-organization. Preliminary results show that the numerical model is able to reproduce the results found by Porcile et al (2017). In situations where sand is less abundant, wavelengths increase, and so does the spacing irregularity. Moreover, it is found that the average height of the sandy dunes is becoming increasingly smaller with decreasing sand availability. Further analysis should reveal dependencies to different environmental parameters, such as grain size, depth and tidal current strength

    Sediment sorting in tidal sand waves fields: the internal structure revealed?

    Get PDF
    Tidal sand waves are rhythmic bed forms found on coastal shelves all around the world. An important property of sand waves is their mobility, as they display migration rates of several meters per year. Insight in these dynamics is of practical relevance, as this behaviour may interfere with offshore engineering activities. State-of-the-art morphodynamic models are used to predict sand wave dynamics, but they still overestimate dimensions such as their height (Van Gerwen et al, 2018). Moreover, these models often assume a uniform grain size distribution, whereas field observations indicate a clear sorting of sediments along sand waves. Previous modelling studies found that a combination of sediment mobility effects and tidal current strength may explain these sorting patterns (e.g. van Oyen and Blondeaux, 2009). However, as these models were limited to the early stage of sand wave formation, they did not account for the nonlinear effects of increasing sand wave amplitudes. Our goal is to include these nonlinear effects in order to further unravel sorting processes, in particular the internal sand wave structure. Hereto we extend the work by van Gerwen et al (2018), allowing for an arbitrary number of sediment fractions, and we adopt the active layer approach of Hirano (1971) to account for bed stratigraphy. To investigate the role of asymmetry in hydrodynamic forcing, we include a residual current superimposed on the dominant tidal component. Results show that in general the crests of sand waves are coarser than the troughs. In the case of an asymmetrical forcing, larger sediments are found on the upper lee slope, whereas the smaller grains are deposited on the lower lee slope. Due to migration, also the internal structure of the sand wave is revealed over time, showing the same pattern as found on the lee slope surface. Many field studies have shown that these model results qualitatively agree with observations on surficial sorting patterns (e.g. Cheng et al, 2018). However, as field data on the internal sediment structure is scarce, it is difficult to validate this model output. Hence, the question remains whether the results on the internal sorting are a true representation of the substrate of sand waves. Nonetheless, the model results give insight in the processes governing grain size sorting over and in sand waves, which could be a valuable element in developing future coastal management strategies, such as sand extraction

    Modelling the effect of suspended load transport and tidal asymmetry on the equilibrium tidal sand wave height

    Get PDF
    Tidal sand waves are rhythmic bed forms found in shallow sandy coastal seas, reaching heights up to ten meters and migration rates of several meters per year. Because of their dynamic behaviour, unravelling the physical processes behind the growth of these bed forms is of particular interest to science and offshore industries. Various modelling efforts have given a good description of the initial stages of sand wave formation by adopting a linear stability analysis on the coupled system of water movement and the sandy seabed. However, the physical processes causing sand waves to grow towards equilibrium are far from understood. We adopt a numerical shallow water model (Delft3D) to study the growth of sand waves towards a stable equilibrium. It is shown that both suspended load transport and tidal asymmetry reduce the equilibrium sand wave height. A residual current results in asymmetrical bed forms that migrate in the direction of the residual current. The combination of suspended load transport and tidal asymmetry results in predicted equilibrium wave heights comparable to wave heights found in the field
    corecore