282 research outputs found

    Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression.

    Get PDF
    Abstract. We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone

    Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells

    Get PDF
    BACKGROUND: Valproate, thalidomide and alcohol (ethanol) exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requires adequate invasion of trophoblast into the maternal uterine tissues. Changes in the migratory behavior of trophoblast by maternal exposure to these teratogens during placentogenesis may therefore alter the structure and function of the placenta. METHODS: In the present study, the effects of sodium valproate, thalidomide and alcohol on the migration of human first trimester trophoblast cell line (HTR-8/SVneo) were examined in vitro. Cells were cultured in the wells of 48-well culture plates as mono or multilayers. Circular patches of cells were removed from the center of the wells by suction, and the migration of cells into the wound was studied using microscopy. Effects of low and high concentrations of valproate, thalidomide and alcohol were examined on the healing of wounds and on the migration rate of cells by determining the wound areas at 0, 3, 6, 12, 24 and 48 h. Effects of drugs and alcohol on the proliferation and the expression levels of integrin subunits beta1 and alpha5 in cells were examined. RESULTS: The migration rates of trophoblast differed between wounds created in mono and multilayers of cells. Exposure to teratogens altered the migration of trophoblast into mono and multilayer wounds. The effects of valproate, thalidomide and alcohol on the proliferation of cells during the rapid migratory phase were mild. Drug exposure caused significant changes in the expression levels of beta1 and alpha5 integrin subunits. CONCLUSION: Results suggest that exposure to valproate, thalidomide or alcohol during the first trimester of pregnancy may change the ultrastructure of the placenta by altering the migration of trophoblast cells and this effect may be mediated by drug- or alcohol-induced changes in the expression levels of beta1 and alpha5 integrin subunits

    Galectin-1 Is Part of Human Trophoblast Invasion Machinery - A Functional Study In Vitro

    Get PDF
    Interactions of glycoconjugates with endogenous galectins, have been long proposed to participate in several reproductive processes including implantation. In human placenta gal-1, gal-3, gal-8, and gal-13 proteins are known to be present. Each of them has been proposed to play multiple functions, but so far no clear picture has emerged. We hypothesized that gal-1 participates in trophoblast invasion, and conducted Matrigel invasion assay using isolated cytotrophoblast from first trimester placenta and HTR-8/SVneo cell line to test it.<0.001) by Ox-gal-1 at 1 µg/ml. Both sets of results confirmed involvement of gal-1 in trophoblast invasion. Galectin profile of isolated cytotrophoblast and HTR-8/SVneo cells was established using RT-PCR and real-time PCR and found to consist of gal-1, gal-3 and gal-8 for both cell types. Only gal-1 was located at the trophoblast cell membrane, as determined by FACS analysis, which is consistent with the results of the functional tests.These findings qualify gal-1 as a member of human trophoblast cell invasion machinery

    Functional and proteomic analysis of a full thickness filaggrin-deficient skin organoid model

    Get PDF
    Background: Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cells in vitro provides the opportunity for selected genetic effects to be investigated in detail. Methods: Primary human keratinocytes and donor-matched primary fibroblasts from healthy individuals were used to create skin organoid models with and without siRNA-mediated knockdown of FLG. Biological replicate sets of organoids were assessed using histological, functional and biochemical measurements. Results: FLG knockdown leads to subtle changes in histology and ultrastructure including a reduction in thickness of the stratum corneum and smaller, less numerous keratohyalin granules. Immature organoids showed some limited evidence of barrier impairment with FLG knockdown, but the mature organoids showed no difference in transepidermal water loss, water content or dye penetration. There was no difference in epidermal ceramide content. Mass spectrometry proteomic analysis detected &gt;8000 proteins per sample. Gene ontology and pathway analyses identified an increase in transcriptional and translational activity but a reduction in proteins contributing to terminal differentiation, including caspase 14, dermokine, AKT1 and TGF-beta-1. Aspects of innate and adaptive immunity were represented in both the up-regulated and down-regulated protein groups, as was the term ‘axon guidance’. Conclusions: This work provides further evidence for keratinocyte-specific mechanisms contributing to immune and neurological, as well as structural, aspects of skin barrier dysfunction. Individuals with filaggrin deficiency may derive benefit from future therapies targeting keratinocyte-immune crosstalk and neurogenic pruritus

    The Role of Alpha 6 Integrin in Prostate Cancer Migration and Bone Pain in a Novel Xenograft Model

    Get PDF
    Of the estimated 565,650 people in the U.S. who will die of cancer in 2008, almost all will have metastasis. Breast, prostate, kidney, thyroid and lung cancers metastasize to the bone. Tumor cells reside within the bone using integrin type cell adhesion receptors and elicit incapacitating bone pain and fractures. In particular, metastatic human prostate tumors express and cleave the integrin A6, a receptor for extracellular matrix components of the bone, i.e., laminin 332 and laminin 511. More than 50% of all prostate cancer patients develop severe bone pain during their remaining lifetime. One major goal is to prevent or delay cancer induced bone pain. We used a novel xenograft mouse model to directly determine if bone pain could be prevented by blocking the known cleavage of the A6 integrin adhesion receptor. Human tumor cells expressing either the wildtype or mutated A6 integrin were placed within the living bone matrix and 21 days later, integrin expression was confirmed by RT-PCR, radiographs were collected and behavioral measurements of spontaneous and evoked pain performed. All animals independent of integrin status had indistinguishable tumor burden and developed bone loss 21 days after surgery. A comparison of animals containing the wild type or mutated integrin revealed that tumor cells expressing the mutated integrin resulted in a dramatic decrease in bone loss, unicortical or bicortical fractures and a decrease in the ability of tumor cells to reach the epiphyseal plate of the bone. Further, tumor cells within the bone expressing the integrin mutation prevented cancer induced spontaneous flinching, tactile allodynia, and movement evoked pain. Preventing A6 integrin cleavage on the prostate tumor cell surface decreased the migration of tumor cells within the bone and the onset and degree of bone pain and fractures. These results suggest that strategies for blocking the cleavage of the adhesion receptors on the tumor cell surface can significantly prevent cancer induced bone pain and slow disease progression within the bone. Since integrin cleavage is mediated by Urokinase-type Plasminogen Activator (uPA), further work is warranted to test the efficacy of uPA inhibitors for prevention or delay of cancer induced bone pain
    corecore