12 research outputs found

    Applications Of Qcm, Eis And Spr In The Investigation Of Surfaces And Interfaces For The Development Of (bio)sensors [aplicações De Qcm, Eis E Spr Na Investigação De Superfícies E Interfaces Para O Desenvolvimento De (bio)sensores]

    No full text
    The use of the quartz crystal microbalance process, electrochemical impedance spectroscopy and surface plasmon resonance for characterizing thin films and monitoring interfaces is presented. The theorical aspects of QCM, EIS and SPR are introduced and the main application areas are outlined. Future prospects of the combined applications of QCM, EIS and SPR methods in the studies of interfacial processes at surfaces are also discussed.276970979Valcárcel, M., Rios, A., (1999) Anal. Chim. Acta, 400, p. 425Zhang, S., Wright, G., Yang, Y., (2000) Biosens. Bioelectron., 15, p. 273Thévenot, D.R., Toth, K., Durst, R.A., Wilson, G.S., (2001) Biosens. Bioelectron., 16, p. 121Fraser, D., (1997) Biosensors in the Body: Continuous in Vivo Monitoring, , Wiley: New YorkJacobson, G.A., Winkeler, M., (2000) Mater. Performance, 39, p. 120Swalen, J.D., Allara, D.L., Andrade, J.D., Chandross, E.A., Garoff, S., Israelachvili, J., McCarthy, T.J., Yu, H., (1987) Langmuir, 3, p. 932Pereira, A.C., Santos, A.S., Kubota, L.T., (2002) Quim. Nova, 25, p. 1012Damos, F.S., Sotomayor, M.D.T., Kubota, L.T., Tanaka, S.M.C.N., Tanaka, A.A., (2003) Analyst, 128, p. 255Freire, R.S., Pessoa, C.A., Mello, L.D., Kubota, L.T., (2003) J. Braz. Chem. Soc., 14, p. 230Freire, R.S., Kubota, L.T., (2002) Analyst, 127, p. 1502De Carvalho, R.M., Neto, G.D., Kubota, L.T., (2000) Anal. Lett., 33, p. 425Santos, A.D., Gorton, L., Kubota, L.T., (2002) Electrochim. Acta, 47, p. 3351Fujiwara, H., Toyoshima, Y., Kondo, M., Matsuda, A., (2001) Sol. Energy Mater. Sol. Cells, 66, p. 209Kim, S.H., Choi, S.W., Suh, H.J., Jin, S.H., Gal, Y.S., Koh, K., (2002) Dyes Pigm., 55, p. 17Geurtz, J., (1993) Surf. Sci. Rep., 18, p. 1Schweiss, R., Werner, C., Knoll, W., (2003) J. Electroanal. Chem., 540, p. 145Lieber, C.M., Liu, J., (1996) Inorg. Chim. Acta, 243, p. 305Stoica, T.F., Teodorescu, V.S., Blanchin, M.G., Stoica, T.A., Gertner, M., Losendo, M., Zaharescu, M., (2003) Mater. Sci. Eng. B, 101, p. 222Pavey, K.D., Hunter, A.C., Paul, F., (2003) Biosens. Bioelectron., 18, p. 1349Striebel, C., Brecht, A., Gauglitz, G., (1994) Biosens. Bioelectron., 9, p. 139Ratner, B.D., (1993) Cardiovasc. Pathol., 2, pp. S87Kosslinger, C., Uttenthaler, E., Drost, S., Aberl, F., Wolf, H., Brink, G., Stanglmaier, A., Sackmann, E., (1995) Sens. Actuators, B, 24, p. 107Jiang, J., Kucernak, A., (2002) J. Electroanal. Chem., 520, p. 64Green, R.J., Frazier, R.A., Shakesheff, K.M., Davies, M.C., Roberts, C.J., Tendler, S.J.B., (2000) Biomaterials, 21, p. 1823O'Sullivan, C.K., Gilbault, G.G., (1999) Biosens. Bioelectron., 14, p. 663Sauerbrey, G., (1958) Z. Phys., 155, p. 206King, W.H., (1964) Anal. Chem., 36, p. 1735Kanazawa, K.K., Gordon, J.G., (1985) Anal. Chem., 57, p. 1770MacCallum, J.J., Alder, J.F., (1983) Analyst, 108, p. 1169Alder, J.F., Drew, P.K.P., Fielden, P.R.A., (1981) J. Chromatogr., A, 212, p. 1981Konash, P.L., Bastiaans, G.J., (1980) Anal. Chem., 52, p. 1929Nomura, T., Okuhara, M., (1982) Anal. Chim. Acta, 142, p. 281Schumacher, R., Borges, G., Kanazawa, K.K., (1985) Surf. Sci., 163, pp. L621Muramatsu, H., Dicks, J.M., Tamiya, E., Karube, I., (1987) Anal. Chem., 59, p. 2760Kurosawa, S., Tawara, E., Kamo, N., Kobatake, Y., (1990) Anal. Chim. Acta, 230, p. 41Yao, S.-Z., Zhou, T.-A., (1988) Anal. Chim. Acta, 212, p. 61Thompson, M., Arthur, C.L., Dhaliwal, G.K., (1986) Anal. Chem., 58, p. 1206Cavic-Vlasak, B.A., Rajakovic, L.J.V., (1992) Fresenius J. Anal. Chem., 343, p. 339Rajakovic, L., Ghaemmaghami, V., Thompson, M., (1989) Anal. Chim. Acta, 217, p. 111Duncan-Hewitt, W.C., Thompson, M., (1992) Anal. Chem., 64, p. 94Ward, M.D., Delawski, E.J., (1991) Anal. Chem., 63, p. 886Hillier, A.C., Ward, M.D., (1992) Anal. Chem., 64, p. 2539Sluyters-Rehbech, M., (1994) Pure Appl. Chem., 66, p. 1931Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods: Fundamentals and Applications, , Wiley: New YorkZoltowski, P., (1994) J. Electroanal. Chem., 375, p. 45Alves, V.A., Brett, C.M.A., (2002) Electrochim. Acta, 47, p. 2081Sluyters-Rehbach, M., Sluyters, J.H., (1970) J. Electroanal. Chem., 26, p. 237Homola, J., Yee, S.S., Gauglitz, G., (1999) Sens. Actuators, B, 54, p. 3Kretschman, E., Raether, H., (1968) Z. Naturforsch., A: Phys. Sci., 23, p. 2135Homola, J., Koudela, I., Yee, S.S., (1999) Sens. Actuators, B, 54, p. 16Bunde, R.L., Jarvi, E.J., Rosentreter, J.J., (1998) Talanta, 46, p. 1223Rickert, J., Weiss, T., Kraas, W., Jung, G., Gopel, W., (1996) Biosens. Bioelectron., 11, p. 591Caruso, F., Furlong, D.N., Niikura, K., Okahata, K., (1998) Colloids Surf., B, 10, p. 199Palecek, E., Fojta, M., Tomschik, M., Wang, J., (1998) Biosens. Bioelectron., 13, p. 621Cosnier, S., Perrot, H., Wessel, R., (2001) Electroanalysis, 13, p. 971Oyama, N., Kelly, A.J., (1991) J. Phys. Chem., 95, p. 9579Komura, T., Niu, G.Y., Yamaguchi, T., Asano, M., (2003) Electrochim. Acta, 48, p. 631Snook, G.A., Bond, A.M., Flatcher, S., (2002) J. Electroanal. Chem., 526, p. 1Mao, Y.A., Wei, W.Z., Zhang, J.Z., Peng, H., Wu, L., (2001) Microchem. J., 70, p. 133Kim, H.J., Kwak, S., Kim, Y.S., Seo, B.I., Kim, E.R., Lee, H., (1998) Thin Solid Films, 191, p. 327Shen, D.Z., Wu, X., Liu, X.Y., Kang, Q., Chen, S.H., (1999) Microchem. J., 63, p. 322Scendo, M., Malyszko, J., (1997) Monatsh. Chem., 128, p. 123Shen, D.Z., Huang, M.H., Chow, L.M., Yang, M.S., (2001) Sens. Actuators, B, 77, p. 664Fey, G.T.-K., Weng, Z.-X., Chen, J.-G., Kumar, T.P., (2003) Mater. Chem. Phys., 80, p. 309Wang, Q., Li, N., (2001) Talanta, 55, p. 1219Antoine, O., Bultel, Y., Durand, R., (2001) J. Electroanal. Chem., 499, p. 85Braun, A., Bartsch, M., Merlo, O., Schnyder, B., Schaffner, B., Kotz, R., Haas, O., Wokaun, A., (2003) Carbon, 41, p. 759Salkind, A.J., Singh, P., Cannone, A., Atwater, T., Wang, X., Reisner, D., (2003) J. Power Sources, 116, p. 174Mirabedini, S.M., Thompson, G.E., Morandian, S., Scantlebury, J.D., (2003) Prog. Org. Coat., 46, p. 112Angelini, E., Grassini, S., Rosalbino, F., Fracassi, F., D'Agostino, R., (2003) Prog. Org. Coat., 46, p. 107Da Silva, L.M., De Faria, L.A., Boodts, J.F.C., (2002) J. Electroanal. Chem., 532, p. 141Cheng, T.-J., Lin, T.-M., Chang, H.-C., (2002) Anal. Chim. Acta, 462, p. 261Rickert, J., Gopel, W., Beck, W., Jung, G., Heiduschka, P., (1996) Biosens. Bioelectron., 11, p. 757Farace, G., Lillie, G., Hianik, T., Payne, P., Vadgama, P., (2002) Bioelectrochemistry, 55, p. 1Ouerghi, O., Senillou, A., Jaffrezic-Renault, N., Martelet, C., Ben Ouada, H.J., Cosnier, S., (2001) Electroanal. Chem., 501, p. 62Sakly, N., Souiri, M., Romdhane, F.F., Bem Ouada, H., Jaffrezic-Renault, N., (2002) Mater. Sci. Eng. C, 21, p. 47Cui, X.Q., Pei, R.J., Wang, X.Z., Yang, F., Ma, Y., Dong, S.J., Yang, X.R., (2003) Biosens. Bioelectron., 18, p. 59Diao, P., Guo, M., Tong, R.T., (2001) J. Electroanal Chem., 495, p. 98Lillie, G., Payne, P., Vadgama, P., (2001) Sens. Actuators, B, 78, p. 249Kasen, K.K., (2001) Mater. Sci. Eng. B, 83, p. 97Guiseppi-Elie, A., Gheorghe, M., (2004) Biosens. Bioelectron., 19, p. 95Strasak, L., Dvorak, J., Hason, S., Vetterl, V., (2002) Bioelectrochemistry, 56, p. 37Munichandraiah, N., Prasad, K.R., (2002) Synth. Met., 126, p. 62Kim, Y., Teshima, K., Kobayashi, N., (2000) Electrochim. Acta, 45, p. 1549Liedberg, B., Nylander, C., Lundstrom, I., (1983) Sens. Actuators, B, 4, p. 299Lundstron, I., (1994) Biosens. Bioelectron., 9, p. 725Liedberg, B., Lundstrom, I., Stenberg, E., (1993) Sens. Actuators, B, 11, p. 63Lofas, S., Malmqvist, M., Ronnberg, I., Stenberg, E., Liedberg, B., Lundstrom, I., (1991) Sens. Actuators, B, 5, p. 79Jonsson, U., Malmqvist, M., (1992) Adv. Biosens., 2, p. 291Terrettaz, S., Stora, T., Duschl, C., Vogel, H., (1993) Langmuir, 9, p. 1361Lingler, S., Rubinstein, I., Knoll, W., Offenhaussen, A., (1997) Langmuir, 13, p. 7085Luo, S.L., Chen, J.H., Kuang, Y.F., Zhou, H.H., Yao, S.Z., (2003) Thin Solids Films, 424, p. 208Kubono, A., Yuasa, N., Shao, H.-L., Umemoto, S., Okui, N., (2002) Appl. Surf. Sci., 193, p. 195Stevenson, K., Miyashita, N., Smieja, J., Mazur, U., (2003) Ultramicroscopy, 97, p. 271Stalgren, J.J.R., Claesson, P.M., Warnheim, T., (2001) Adv. Colloid Interfaces Sci., 89, p. 383Miura, Y., Sasao, Y., Dohi, H., Nishida, Y., Kobayashi, K., (2002) Anal. Biochem., 310, p. 27Qu, D., Morin, M., (2002) J. Electroanal. Chem., 524, p. 77Marxer, C.G., Coen, M.C., Schlapbach, L., (2003) J. Colloid Interface Sci., 261, p. 291Mao, Y., Wei, W., He, D., Nie, L., Yao, S., (2002) Anal. Biochem., 306, p. 23Syritski, V., Opik, A., Forsen, O., (2003) Electrochim. Acta, 48, p. 1409Feher, K., Inzelt, G., (2002) Electrochim. Acta, 47, p. 3551Kanungo, M., Kumar, A., Contractor, A.Q., (2002) J. Electroanal. Chem., 528, p. 46Gou, W., Wang, J., Wang, C., He, J.-Q., He, X.-W., Cheng, J.-P., (2002) Tetrahedron Lett., 43, p. 5665Wang, C., Chen, F., He, X.-W., (2002) Anal. Chim. Acta, 464, p. 57Schweiss, R., Werner, C., Knoll, W., (2003) J. Electroanal. Chem., 540, p. 145Miyashita, T., Aoki, A., Abe, Y., (1999) Mol. Cryst. Liq. Cryst. Sci. Technol., 327, p. 77Saliba, R., Ravaine, S., Mingotaude, C., Agricole, B., (1999) J. Phys. Chem. B, 103, p. 9712Subramanian, R., Lakshminarayanan, V., (2000) Electrochim. Acta, 45, p. 4501Diao, P., Guo, M., Tong, R.T., (2001) J. Electroanal. Chem., 495, p. 98Zhou, A., Xie, Q., Wu, Y., Cai, Y., Nie, L., Yao, S., (2000) J. Colloid Interface Sci., 229, p. 12Nahir, T.M., Bowden, E.F., (2002) Langmuir, 18, p. 5283Omanovic, S., Roscoe, S.G., (2000) J. Colloid Interface Sci., 227, p. 452Iroh, J.O., Levine, K., (2003) J. Power Sources, 117, p. 267Mori, K., Yamaguchi, T., Takahashim, K., Komura, T., (2000) Bull. Chem. Soc. Jpn., 73, p. 19Yan, J.C., Dong, S.J., Li, J.H., Chen, W.Q., (1997) J. Electrochem. Soc., 144, p. 3858Zhou, M., Otomo, A., Yokoyama, S., Mashiko, S., (2001) Thin Solid Films, 393, p. 114Georgiadis, R., Peterlinz, K.P., Peterson, A.W., Rahn, J.R., Grassi, J.H., (2000) Langmuir, 16, p. 6759Hassan, A.K., Nabok, A.V., Ray, A.K., Lucke, A., Smith, K., Stirlimg, C.J.M., Davis, F., (1999) Mater. Sci. Eng., C, 8, p. 251Georgiadis, R., Peterlinz, K.P., Peterson, A.W., (2000) J. Am. Chem. Soc., 122, p. 3166Willians, A.J., Gupta, V.K., (2003) Thin Solids Films, 423, p. 228Lee, M., Kim, T.-I., Kim, K.-H., Kim, J.-H., Choi, M.-S., Choi, H.-J., Koh, K., (2002) Anal. Biochem., 310, p. 163Okumura, S., Akao, T., Mizuki, E., Ohba, M., Inouye, K., (2001) J. Biochem. Biophys. Methods, 47, p. 177Kang, X., Jin, Y., Cheng, G., Dong, S., (2002) Langmuir, 18, p. 1713Nabok, A.V., Hassan, A.K., Ray, A.K., Omar, O., Kalchenko, V.I., (1997) Sens. Actuators, B, 45, p. 115Hassan, A.K., Ray, A.K., Nabok, A.V., Davis, F., (2001) Sens. Actuators, B, 77, p. 638Fusalba, F., Belanger, D., (1999) J. Mater. Res., 14, p. 1805Yang, F., Cui, X., Yang, X., (2002) Biophys. Chem., 99, p. 99Linder, M., Szilvay, G.R., Nakari-Setala, T., Soderlund, H., Penttila, M., (2002) Protein Sci., 11, p. 2257Naumann, R., Schiller, S.M., Geiss, F., Grohe, B., Hartman, K.B., Karcher, I., Koper, I., Knoll, W., (2003) Langmuir, 19, p. 543

    Development Of A Sensor Based On Tetracyanoethylenide (litcne)/poly-l- Lysine (pll) For Dopamine Determination

    No full text
    The catalytic oxidation of dopamine (DA) at a LiTCNE (lithium tetracyanoethylenide) film modified electrode is studied by electrochemical approaches. The immobilization of LiTCNE was performed by a polymer (poly-l-lysine) to prepare this modified electrode and its application for dopamine (DA) determination is described in detail. The modified electrode showed a high activity for the electrooxidation of dopamine (DA) at E p = 0.20 V versus SCE. The modified electrode presented a wide linear response range for DA from 0.01 up to 10 μmol l-1 by differential pulse voltammetry (DPV) with a detection limit of 0.5 nmol l-1. The repeatability of the proposed sensor evaluated in term of relative standard deviation was 3.2% for n = 10. The sensor was applied for the determination of dopamine in pharmaceutical formulations and the average recovery for these samples was 101.9 (±0.1)%. © 2004 Elsevier Ltd. All rights reserved.501326752683Cooper, J.R., Bloom, F.E., Roth, R.H., (1982) The Biochemical Basis of Neuropharmacology, , Oxford University Press Oxford, UKDamier, P., Hirsch, E.C., Agid, Y., Graybiel, A.M., (1999) Brain, 122, p. 1437Michael, D.J., Wightman, R.M., (1999) J. Pharm. Biomed. Anal., 19, p. 33Wighman, R.M., May, L.J., Michael, A.C., (1988) Anal. Chem., 60, pp. 769ALane, R.F., Blaha, C.D., (1990) Langmuir, 6, p. 56Janata, J., (1992) Anal. Chem., 64, pp. 196RYe, J., Baldwin, R.P., (1988) Anal. Chem., 60, p. 1979Murray, R.W., (1984) Electroanalytical Chemistry, p. 191. , A.J. Bard Marcel Dekker New YorkRedepenning, J.G., (1987) Trends Anal. Chem., 6, p. 18Damos, F.S., Sotomayor, M.D.T., Kubota, L.T., Tanaka, S.M.C.N., Tanaka, A.A., (2003) Analyst, 128, p. 255Marzal, P.C., Chumbimuni-Torres, K.Y., Hoehr, N.F., Neto, G.O., Kubota, L.T., (2004) Sens. Actuators, 100, p. 333Miura, T., Masaki, Y., (1994) Tetrahedron Lett., 35, p. 7961Miura, T., Masaki, Y., (1994) J. Chem. Soc., Perkin Trans., 1, p. 1659Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., (2004) Talanta, 64, p. 935Khoo, S.B., Foley, J.K., Pons, S., (1986) J. Electroanal. Chem., 215, p. 273Sttephan, S., Maenz, K., Stadermann, D., (1992) Liebigs Ann. Chem., p. 1033Pereira, A.C., Santos, A.S., Kubota, L.T., (2002) Quim. Nova, 25, p. 1012Oyama, N., Anson, F.C., (1979) J. Am. Chem. Soc., 101, p. 3450Oyama, N., Anson, F.C., (1980) Anal. Chem., 52, p. 1192Shigehara, K., Oyama, N., Anson, F.C., (1981) Inorg. Chem., 20, p. 518Aleman, C., Zanuy, D., Casanovas, J., (2003) J. Phys. Chem., 107, p. 4151Muthukuma, M., (2004) J. Chem. Phys., 120, p. 9343Moreira, J.C., Zhao, R., Fogg, A.G., (1990) Analyst, 115, p. 1565Anson, F.C., Ohsaka, T., Saveant, J.M., (1983) J. Phys. Chem., 87, p. 640Webster, O.W., Mahler, W., Benson, R.E., (1962) J. Am. Chem. Soc., 84, p. 3678Zhu, Z., Na-Qiang, L., (1998) Electroanalysis, 10, p. 643Hall, E.A.H., Skinner, N.G., Jung, C., Szunerits, S., (1995) Electroanalysis, 7, p. 830Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, Fundamentals and Applications, , Wiley New YorkRen, X., Puckup, P.J., (1997) J. Electroanal. Chem., 420, p. 251Raj, C.R., Takeyoshi, T., Ohsaka, T., (2003) J. Electroanal. Chem., 543, p. 127Andriex, C.P., Dumas-Bouchiat, J.M., Savéant, J.M., (1982) J. Electroanal. Chem., 131, p. 1Laviron, E., (1981) J. Electroanal. Chem., 124, p. 1Richard, J.A., Whitson, P.E., Evans, D.H., (1975) J. Electroanal. Chem., 63, p. 3111Papouchado, L., Sandford, R.W., Petrie, G., Adams, R.N., (1975) J. Electroanal. Chem., 65, p. 275Wang, Q., Dong, D., Li, N., (2001) Bioelectrochemistry, 54, p. 169Ferreira, M., Dinelli, L.R., Wohnrath, K., Batista, A.A., Oliveira Jr., O.N., (2004) Thin Solid Films, 446, p. 301(1987) Analyst, 112, p. 199. , Analytical Methods CommiteeZhou, D.M., Ju, H.X., Chen, H.Y., (1996) J. Electroanal. Chem., 408, p. 219Carvalho, R.M., Oliveira, O.N., Kubota, L.T., (2000) Anal. Chim. Acta, 420, p. 109Carvalho, R.M., Kubota, L.T., Rath, S., (2003) J. Electroanal. Chem., 548, p. 19Winter, E., Carvalho, R.M., Kubota, L.T., Rath, S., (2000) J. Braz. Chem. Soc., 14, p. 564Copra, A., (2001), M.Sc. Thesis, University of Sarajevo, Sarajev

    Adsorption Kinetic And Properties Of Self-assembled Monolayer Based On Mono(6-deoxy-6-mercapto)-β-cyclodextrin Molecules

    No full text
    The kinetic of the assembly and adsorption processes of mono(6-deoxy-6-mercapto)-β-cyclodextrin (βCDSH) on gold surfaces in situ and in real time have been investigated by surface plasmon resonance technique (SPR). The film thickness, dielectric constant and its coverage capability were determined by SPR with one-wavelength approach. To unambiguously determine the film parameters avoiding multi-layer adsorption as well as an underestimation of the binding constants of the adsorption process, the influence of the mass transport of βCDSH was investigated and controlled. Under flow regime the SPR angle was monitored in several concentrations of thiol and the data were fitted by using a two-step adsorption model based on a fast adsorption of the thiol molecules in a first step followed by its slow rearrangement on the gold surface. Finally, the selectivity of the host-guest property of the βCDSH monolayer was investigated using [Fe(CN)6]3-/4- and ferrocenemonocarboxylic acid as redox probes. © 2006 Elsevier B.V. All rights reserved.60101/02/15181193Atwoods, J.L., Lehn, J.-M., (1996) Comprehensive Supramolecular Chemistry, 3, pp. 1-78. , Szejtli J., and Osa T. (Eds), Pergamon, Oxford, UKKhan, A.R., Forgo, P., Stine, K.J., D'Souza, V.T., (1998) Chem. Rev., 98, pp. 1977-1996Cszejtli, J., (1998) Chem. Rev., 98, pp. 1743-1754Martin Del Valle, E.M., (2004) Process Biochem., 39, pp. 1033-1046Singh, M., Sharma, R., Banerjee, U.C., (2002) Biotechnol. Adv., 20, pp. 341-359D'Souza, V.T., Lipkowitz, K.B., (1998) Chem. Rev., 98, pp. 1741-1742Pospisil, L., Svestka, M.J., (1994) J. Electroanal. Chem., 366, pp. 295-302Rojas, M.T., Koniger, R., Stoddart, J.F., Kaifer, A.E., (1995) J. Am. Chem. Soc., 117, pp. 336-343Ferancova, A., Labuda, J., Kutner, W., (2001) Electroanalysis, 13, pp. 1417-1423Parker, D., Kataky, R., (1997) Chem. Commun., 21, pp. 141-145Ferancova, A., Korgova, E., Miko, R., Labuda, J., (2000) J. Electroanal. Chem., 492, pp. 74-77Busse, S., DePaoli, M., Wenz, G., Mittler, S., (2001) Sensors Actuat. B, 80, pp. 116-124Wang, Y., Kaifer, A.E., (1998) J. Phys. Chem. B, 102, pp. 9922-9927Karpovich, D.S., Blanchardt, G.J., (1994) Langmuir, 10, pp. 3315-3322Subramaniam, R., Lakshminarayanan, V., (2000) Electrochim. Acta, 45, pp. 4501-4509Peterlinz, K.A., Georgiadis, R., (1996) Langmuir, 12, pp. 4731-4740Henke, C., Stenem, C., Janshoff, A., Steffen, G., Luftmann, H., Sieber, M., Galla, H.-J., (1996) Anal. Chem., 68, pp. 3158-3165Fujita, K., Ueda, T., Imoto, T., Tabushi, I., Toh, N., Koga, T., (1982) Bioorg. Chem., 11, pp. 72-84Kretschmann, E., (1971) Z. Phys., 241, pp. 313-324Damos, F.S., Luz, R.C.S., Kubota, L.T., (2005) Langmuir, 21, p. 602Caide, X., Sui, S.-F., (2000) Sensors Actuat. B, 66, pp. 174-177Peterlinz, K.A., Georgiadis, R., (1996) Opt. Commun., 130, pp. 260-266Bruijn, H.E., Kooyman, R.P.H., Greve, J., (1990) Appl. Opt., 29, pp. 1974-1978Bruijn, H.E., Altenburg, B.S.F., Kooyman, R.P.H., Greve, J., (1991) Opt. Commun., 82, pp. 425-432Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev., 105, pp. 1103-1169DeBonno, R.F., Loucks, G.D., Manna, D.D., Krull, U., (1995) Can. J. Chem., 74, pp. 677-688Azzam, R.M.A., Bashara, N.M., (1977) Ellipsometry and Polarized Light, , Elsevier Science, Amsterdam, The Netherlands p. 359Hu, K., Bard, A.J., (1998) Langmuir, 14, pp. 4790-4794Morton, T.A., Myska, D.G., Charken, I.M., (1995) Anal. Biochem., 227, pp. 176-185Camillone III, N., (2004) Langmuir, 201, pp. 1199-1206Kim, Y.T., McCarley, R.L., Bard, A.J., (1993) Langmuir, 9, pp. 1941-1944Glaser, R.W., (1993) Anal. Biochem., 213, pp. 152-161Adamson, A.W., (1982) Physical Chemistry of Surfaces, , John Wiley & Sons, New YorkUlman, A., (1991) An Introduction to Ultrathin Organic Films, , Academic Press Inc., New YorkDijksma, M., Boukamp, B.A., Kamp, B., van Bennekom, W.P., (2002) Langmuir, 18, pp. 3105-3112Nelles, G., Weisser, M., Back, R., Wohlfart, P., Wenz, G., Mittler-Neher, S., (1996) J. Am. Chem. Soc., 118, pp. 5039-5046Sabatini, E., Rubinstein, J., (1987) J. Phys. Chem., 91, pp. 6663-6669Finklea, H.O., Snider, D.A., Fedyk, J., (1993) Langmuir, 9, pp. 3660-3667Choi, S.-W., Jang, J.-H., Kang, Y.-G., Lee, C.-J., Kim, J.-H., (2005) Colloids Surf. A: Phys. Eng. Aspects, 257, pp. 31-36Rekharsky, N.V., Inoue, Y., (1998) Chem. Rev., 98, pp. 1875-1917Bard, A., Falkner, L.R., (1980) Electrochemical Methods: Fundamentals and Applications, , John Wiley & Sons, New Yor

    Development Of A Sensor For L-dopa Based On Co(dmg) 2clpy/multi-walled Carbon Nanotubes Composite Immobilized On Basal Plane Pyrolytic Graphite Electrode

    No full text
    L-Dopa is the immediate precursor of the neurotransmitter dopamine, being the most widely prescribed drug in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-Dopa in pharmaceutical formulations using a basal plane pyrolytic graphite (BPPG) electrode modified with chloro(pyridine)bis(dimethylglyoximato)cobalt(III) (Co(DMG) 2ClPy) absorbed in a multi-walled carbon nanotube (MWCNT). Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were used to characterize the materials. The electrocatalytical oxidation of L-Dopa using the Co(DMG) 2ClPy/MWCNT/BPPG electrode was investigated by cyclic voltammetry and square wave voltammetry. The parameters that influence the electrode response (the amount of Co(DMG) 2ClPy and of MWCNT, buffer solution, buffer concentration, buffer pH, frequency and potential pulse amplitude) were investigated. Voltammetric peak currents showed a linear response for L-Dopa concentration in the range of 3 to 100μM, with a sensitivity of 4.43μAcm -2/μM and a detection limit of 0.86μM. The related standard deviation for 10 determinations of 50μML-Dopa was 1.6%. The results obtained for L-Dopa determination in pharmaceutical formulations (tablets) were in agreement with the compared official method. The sensor was successfully applied for L-Dopa selective determination in pharmaceutical formulations. © 2012 Elsevier B.V.862229Fauci, A.S., Braunwald, E., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., Loscalzo, J., (2008) Harrison's Principles of Internal Medicine, , McGraw-Hill Professional, New YorkTrevor, A.J., Katzung, B.G., Masters, S.B., (2010) Katzung & Trevor's Pharmacology, Examination and Board Review, , McGraw-Hill Medical, New YorkGrünhut, M., Centurión, M.E., Fragoso, W.D., Almeida, L.F., de Araújo, M.C.U., Band, B.S.F., Flow-batch technique for the simultaneous enzymatic determination of levodopa and carbidopa in pharmaceuticals using PLS and successive projections algorithm (2008) Talanta, 75, pp. 950-958Kaur, K., Malik, A.K., Singh, B., Godarzi, M., Simultaneous spectrophotometric determination of carbidopa and levodopa by partial least squares regression, principal component regression and least squares support vector machine methods (2009) Thai J. Pharm. Sci., 33, pp. 123-136Marques, K.L., Santos, J.L.M., Lopes, J.A., Lima, J.L.F.C., Simultaneous chemiluminometric determination of levodopa and benzerazide in a multi-pumping flow system with multivariate calibration (2008) Anal. Sci., 24, pp. 985-991Zhao, S., Bai, W., Wang, B., He, M., Determination of levodopa by capillary electrophoresis with chemiluminescence detection (2007) Talanta, 73, pp. 142-146Li, S., Wu, H., Yu, Y., Li, Y., Nie, J., Fu, H., Yu, R., Quantitative analysis of levodopa, carbidopa and methyldopa in human plasma samples using HPLC-DAD combined with second-order calibration based on alternating trilinear decomposition algorithm (2010) Talanta, 81, pp. 805-812Muzzi, C., Bertocci, E., Terzuoli, L., Porcelli, B., Ciari, I., Pagani, R., Guerranti, R., Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and α-methyldopa by HPLC (2008) Biomed. Pharmacother., 62, pp. 253-258Talebpour, Z., Haghgoob, S., Shamsipur, M., 1H nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations (2004) Anal. Chim. Acta, 506, pp. 97-104Aslanoglu, M., Kutluay, A., Goktas, S., Karabulut, S., Voltammetric behaviour of levodopa and its quantification in pharmaceuticals using a β-cyclodextrine doped poly(2,5-diaminobenzenesulfonic acid) modified electrode (2009) J. Chem. Sci., 121, pp. 209-215Shahrokhian, S., Asadian, E., Electrochemical determination of L-Dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron (2009) J. Electroanal. Chem., 636, pp. 40-46Ensafi, A.A., Arabzadeh, A., Karimi-Maleh, H., Sequential determination of benserazide and levodopa by voltammetric method using chloranil as a mediator (2010) J. Braz. Chem. Soc., 21, pp. 1572-1580Nematollahi, D., Rafiee, M., Fotouhi, L., Mechanistic study of homogeneous reactions coupled with electrochemical oxidation of catechols (2009) J. Iran. Chem. Soc., 6, pp. 448-476Rafiee, M., Nematollahi, D., Electrochemical oxidation of catechols in the presence of cyanoacetone and methyl cyanoacetate (2009) J. Electroanal. Chem., 626, pp. 36-41Teixeira, M.F.S., Bergamini, M.F., Marques, C.M.P., Bocchi, N., Voltammetric determination of L-Dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite (2004) Talanta, 63, pp. 1083-1088Tu, Y., Xu, Q., Zou, Q., Yin, Z., Sun, Y., Zhao, Y., Electrochemical behavior of levodopa at multi-wall carbon nanotubes-quantum dots modified glassy carbon electrodes (2007) Anal. Sci., 23, pp. 1321-1324Yaghoubian, H., Karimi-Maleh, H., Khalilzadeh, M.A., Karimi, F., Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode (2009) Int. J. Electrochem. Sci., 4, pp. 993-1003Woollins, J.D., (1994) Inorganic experiments, , VCH, WeinheimJaselkis, B., Diehl, H., The polarography of vitamins B12r and B12a (1954) J. Am. Chem. Soc., 76, pp. 4345-4348Silvia, R.H., Gustavo, G.R., Héctor, C.G., Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B 6 and B 12 vitamins in pharmaceutical preparations (2003) Talanta, 61, pp. 743-753Lin, M.S., Leu, H.J., Lai, C.H., Development of vitamin B 12 based disposable sensor for dissolved oxygen (2006) Anal. Chim. Acta, 561, pp. 164-170Dong, S., Chi, L., He, P., Wang, Q., Fang, Y., Simultaneous determination of antioxidants at a chemically modified electrode with vitamin B12 by capillary zone electrophoresis coupled with amperometric detection (2009) Talanta, 80, pp. 809-814Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354, pp. 56-58Jiang, H., Zhao, Y., Yang, H., Akins, D.L., Synthesis and electrochemical properties of single-walled carbon nanotube-gold nanoparticle composites (2009) Mater. Chem. Phys., 114, pp. 879-883Shih, Y.F., Chen, L.S., Jeng, R.J., Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites (2008) Polymer, 49, pp. 4602-4611Zhang, Y., Shen, Y., Han, D., Wang, Z., Song, J., Li, F., Niu, L., Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit: Preparation and electrochemical properties (2007) Biosens. Bioelectron., 23, pp. 438-443Rivas, G.A., Rubianes, M.D., Rodríguez, M.C., Ferreyra, N.F., Luque, G.L., Pedano, M.L., Miscoria, S.A., Parrado, C., Carbon nanotubes for electrochemical biosensing (2007) Talanta, 74, pp. 291-307Hu, C., Hu, S., Carbon nanotube-based electrochemical sensors: Principles and applications in biomedical systems (2009) J. Sens., pp. 1-40. , (Review Article)Luz, R.C.S., Damos, F.S., Tanaka, A.A., Kubota, L.T., Gushikem, Y., Electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone/multi-walled carbon nanotubes immobilized on edge plane pyrolytic graphite electrode for NADH oxidation (2008) Electrochim. Acta, 53, pp. 4706-4714Luz, R.C.S., Maroneze, C.M., Tanaka, A.A., Kubota, L.T., Gushikem, Y., Damos, F.S., The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards L-glutathione, and its determination in human erythrocytes (2010) Microchim. Acta, 171, pp. 169-178Pillay, J., Ozoemena, K.I., Efficient electron transport across nickel powder modified basal plane pyrolytic graphite electrode: Sensitive detection of sulfhydryl degradation products of the V-type nerve agents (2007) Electrochem. Comm., 9, pp. 1816-1823(2008), The United States Pharmacopeia - The National Formulary, USP 31 - NF 26, United States Pharmacopeial Convention, RockvilleLee, J., Park, E.J., Choi, J., Hong, J., Shim, S.E., Polyurethane/PEG-modified MWCNT composite film for the chemical vapor sensor application (2010) Synth. Met., 160, pp. 566-574Dhand, C., Arya, S.K., Singh, S.P., Singh, B.P., Datta, M., Malhotra, B.D., Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route (2008) Carbon, 46, pp. 1727-1735Borgo, C.A., Lazarin, A.M., Davanzo, C.U., Gushikem, Y., Preparação e caracterização do complexo cobaloxima e sua utilização na construção de um eletrodo modificado. Um experimento eletroquímico no curso de graduação (2003) Quím. Nova, 26, pp. 943-947Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods: Fundamentals and Applications, , John Wiley & Sons, New YorkLuz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a voltammetric sensor for catechol in nanomolar levels using a modified electrode with Cu(phen) 2(TCNQ) 2 and PLL (2006) Sens. Actuators B, 117, pp. 274-281Laviron, E., Electrochemical reactions with protonations at equilibrium: part II. The 1e, 1 H + reaction (four-member square scheme) for a heterogeneous reaction (1981) J. Electroanal. Chem., 124, pp. 1-7Papouchado, L., Sandford, R.W., Petrie, G., Adams, R.N., Anodic oxidation pathways of phenolic compounds: Part 2. Stepwise electron transfers and coupled hydroxylations (1975) J. Electroanal. Chem., 65, pp. 275-284Recommendations for the definition, estimation and use of the detection limit (1987) Analyst, 112, pp. 199-204. , Analytical Methods CommitteeTeixeira, M.F.S., Marcolino-Júnior, L.H., Fatibello-Filho, O., Dockal, E.R., Bergamini, M.F., An electrochemical sensor for L-Dopa based on oxovanadium-salen thin film electrode applied flow injection system (2007) Sens. Actuators B, 122, pp. 549-555de Melo, H.C., Seleghim, A.P.D., Polito, W.L., Fatibello-Filho, O., Vieira, I.C., Simultaneous differential pulse voltammetric determination of L-Dopa and carbidopa in pharmaceuticals using a carbon paste electrode modified with lead dioxide immobilized in a polyester resin (2007) J. Braz. Chem. Soc., 18, pp. 797-803Quintino, M.S.M., Yamashita, M., Angnes, L., Voltammetric studies and determination of levodopa and carbidopa in pharmaceutical products (2006) Electroanalysis, 18, pp. 655-661Bergamini, M.F., Santos, A.L., Stradiotto, N.R., Zanoni, M.V.B., A disposable electrochemical sensor for the rapid determination of Levodopa (2005) J. Pharm. Biomed. Anal., 39, pp. 54-59Triola, M.F., (2008) Introdução à Estatística, , LTC, Rio de Janeir

    Electrocatalytic Determination Of Reduced Glutathione In Human Erythrocytes

    No full text
    The determination of reduced glutathione (GSH) in human erythrocytes using a simple, fast and sensitive method employing a glassy carbon electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) immobilized in poly(l-lysine) (PLL) film was investigated. This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of GSH, decreasing substantially the anodic overpotentials for 0.2 V versus Ag/AgCl. The modified electrode presented better performance in 0.1 mol l-1 piperazine-N,N-bis(2-ethanesulfonic acid) buffer at pH 7.4. The other experimental parameters, such as the concentration of CoTSPc and PLL in the membrane preparation, pH, type of buffer solution and applied potential, were optimized. Under optimized operational conditions, a linear response from 50 to 2,160 nmol l-1 was obtained with a high sensitivity of 1.5 nA l nmol-1 cm-2. The detection limit for GSH determination was 15 nmol l-1. The proposed sensor presented good repeatability, evaluated in terms of the relative standard deviation (1.5%) for n∈=∈10. The modified electrode was applied for determination of GSH in erythrocyte samples and the results were in agreement with those obtained by a comparative method described in the literature The average recovery for these fortified samples was 100∈±∈1)%. Applying a paired Student's-t test to compare these methods, we could observe that, at the 95% confidence level, there was no statistical difference between the reference and the proposed methods. © Springer-Verlag 2007.387518911897Chen, J., He, Z., Liu, H., Cha, C., (2006) J Electroanal Chem, 588, pp. 324-330Griffith, O.W., (1999) Free Radical Biol Med, 27, pp. 922-935Droge, D., Breitkreutz, R., (2000) Proc Nutr Soc, 59, pp. 595-600Cereser, C., Guichard, J., Drai, J., Bannier, E., Garcia, I., Boget, S., Parvaz, P., Revol, A., (2001) J Chromatogr B, 752, pp. 123-132Zhang, W., Wan, F., Zhu, W., Xu, H., Ye, X., Cheng, R., Jin, L.T., (2005) J Chromatogr B, 818, pp. 227-232Shen, Z., Wang, H., Liang, S.C., Zhang, Z.M., Zhang, H.S., (2002) Anal Lett, 35, pp. 2269-2278Chen, X.P., Cross, R.F., Clark, A.G., Baker, W.L., (1999) Mikrochim Acta, 130, pp. 225-231Besada, A., Tadros, N.B., Gawargious, Y.A., (1989) Mikrochim Acta, 3, pp. 143-146Raggi, M.A., Nobile, L., Giovannini, A.G., (1991) J Pharm Biomed Anal, 9, pp. 1037-1040Compagnone, D., Massoud, R., Di Ilio, C., Federici, G., (1991) Anal Lett, 24, pp. 993-1004Chwatko, G., Bold, E., (2000) Talanta, 52, pp. 509-515Jin, W.R., Zhan, X., Xian, L., (2000) Electroanalysis, 12, pp. 858-862Ricci, G.F., Arduini, F., Tuta, C.S., Sozzo, U., Moscone, D., Amine, A., Palleschi, G., (2006) Anal Chim Acta, 55 (8), pp. 164-170Salimi, A., Hallaj, R., (2005) Talanta, 66, pp. 967-975Compagnone, D., Federici, G., Scarciglia, L., (1993) Biosens Bioielectron, 8, pp. 257-263Compagnone, D., Federici, G., Scarciglia, L., Palleschi, G., (1994) Anal Lett, 27, pp. 15-27Zhang, S., Sun, W.L., Zhang, W., Qi, W.Y., Jin, L.T., Yamamoto, K., Tao, S., Jin, J.Y., (1999) Anal Chim Acte, 386, pp. 21-30Salimi, A., Pourbeyram, S., (2003) Talanta, 60, pp. 205-214Calvo-Marzal, P., Chumbimuni-Torres, K.Y., Hoehr, N.F., Kubota, L.T., (2006) Clin Chim Acta, 371, pp. 152-158Filanovsky, B., (1999) Anal Chim Acta, 394, pp. 91-100Guo, Y.Z., Guadalupe, A.R., (1998) Sens Actuators B, 46, pp. 213-219Stephen, A.W., Stephen, P.H., John, P.H., Brian, J.B., (1989) Analyst, 114, pp. 1563-1570Griveau, S., Gulppi, M., Pavez, J., Zagal, J.H., Bedioui, F., (2003) Electroanalysis, 15, pp. 779-785Zagal, J.H., Gulppi, M., Isaacs, M., Cardenas-Jiron, G., Aguirre, M.J., (1998) Electrochim Acta, 44, pp. 1349-1357Griveau, S., Pavez, J., Zagal, J., Bedioui, F., (2001) J Electroanal Chem, 497, pp. 75-83Gulppi, M., Griveau, S., Bedioui, F., Zagal, J., (2001) Electrochim Acta, 46, pp. 3397-3404Griveau, S., Albin, V., Pauporte, T., Zagal, J.H., Bedioui, F., (2002) J Mater Chem, 12, pp. 225-232Anson, F.C., Ohsaka, T., Saveant, J.M., (1983) J Phys Chem, 87, pp. 640-647Muthukuma, M., (2004) J Chem Phys, 120, pp. 9343-9350Weber, J.H., Busch, D.H., (1965) Inorg Chem, 4, pp. 469-471Griffith, O.W., (1980) Anal Biochem, 106, pp. 207-212Premkumar, J., Khoo, S.B., (2005) J Electroanal Chem, 576, pp. 105-111Anderson, M., (1985) Methods Enzymol, 13, pp. 548-555Limson, J., Nyokong, T., (1998) Electroanalysis, 10, pp. 988-993Zagal, J., Páez, M., Tanaka, A.A., dos Santos Jr, J.R., (1992) J Electroanal Chem, 339, pp. 13-30Lever, A.B.P., Milaeva, E.R., Speier, G., (1993) Phthalocyanine: Properties and applications, 3. , Lezniff CC, Lever ABP eds, VCH, New YorkZagal, J.H., (1992) Coord Chem Rev, 119, pp. 89-136Gulppi, M.A., Páez, M.A., Costamagna, J.A., Cárdenas-Jirón, G., Bedioui, F., Zagal, J.H., (2005) J Electroanal Chem, 580, pp. 50-56Saari, N.B., Fujita, S., Miyazoe, R., Okugawa, M., (1996) J Food Biochem, 19, pp. 321-327Fernandes, J.C.B., Kubota, L.T., Neto, G.O., (1999) Anal Chim Acta, 385, pp. 3-12Rover Jr, L., Kubota, L.T., Höehr, N.F., (2001) Clin Chim Acta, 308, pp. 55-67Sehlotho, N., Nyokong, T., Zagal, J.H., Bedioui, F., (2006) Electrochim Acta, 51, pp. 5125-5130Salimi, A., Pourbeyram, S., (2003) Talanta, 60, pp. 205-214Inoue, T., Kirchhoff, J.R., (2000) Anal Chem, 72, pp. 5755-5760(1987) Analyst, 112, pp. 199-204. , Analytical Methods CommitteeSilva, M.L.S., Garcia, M.B.Q., Lima, J.L.F.C., Barrado, E., (2006) Anal Chim Acta, 573-574, pp. 383-39

    Development Of A Voltammetric Sensor For Catechol In Nanomolar Levels Using A Modified Electrode With Cu(phen)2(tcnq)2 And Pll

    No full text
    A sensor based on glassy carbon (GC) electrode modified with bis(1,10-phenantroline)copper(II) bis(tetracyanoquinodimethanide) [Cu(phen)2(TCNQ)2] immobilized in a poly-l-lysine (PLL) film is proposed for catechol (CA) determination with differential pulse voltammetry (DPV) technique. The modified electrode showed excellent stability as well as the ability to detect catechol in nanomolar catechol levels. A linear response range from 10 nmol l-1 up to 20 μmol l-1 with a sensitivity of 2.29 μA l μmol-1 cm-2 and detection limit of 3.0 nmol l-1 were observed in the optimized conditions. The repeatability of the mesurements with the proposed sensor was 2% evaluated in term of relative standard deviation, with n = 10 for 10 μmol l-1 CA. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the catechol oxidation reaction involves two-electrons and a heterogenous rate constant (k) average value of about 1.30 × 103 M-1 s-1. The catechol diffusion coefficient (Do) value was estimated as being 7.6 × 10-6 cm2 s-1. The sensor was successfully applied for CA determination in powdered guarana samples. © 2005 Elsevier B.V. All rights reserved.1171274281Solná, R., Sapelnikova, S., Skládal, P., Winther-Nielsen, M., Carlsson, C., Emnéus, J., Ruzgas, T., Multienzyme electrochemical array sensor for determination of phenols and pesticides (2005) Talanta, 65, pp. 349-357Lin, X., Gong, J., Electrocatalytic oxidation and selective detection of dopamine at a 5,5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide self-assembled bilayer membrane modified glassy carbon electrode (2004) Anal. Chim. Acta, 507, pp. 259-265Yoshitake, T., Kehr, J., Yoshitake, S., Fujino, K., Nohta, H., Yamaguchi, M., Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine (2004) J. Chromatogr. B, 807, pp. 177-183Powley, M.W., Carloson, G.P., Species comparison of hepatic and pulmonary metabolism of benzene (1999) Toxicology, 139, pp. 207-217Talcott, S.T., Passeretti, S., Duncan, C.E., Gorbet, D.W., Polyphenolic content and sensory properties of normal and high oleic acid peanuts (2005) Food Chem., 90, pp. 379-388Cui, H., He, C., Zhao, G., Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection (1999) J. Chromatogr. A, 855, pp. 171-179Maurer, H.H., Bickeboeller-Friedrich, J., Kraemer, T., Gas chromatographic-mass spectrometric procedures for determination of the catechol-O-methyltransferase (COMT) activity and for detection of unstable catecholic metabolites in human and rat liver preparations after (COMT) catalyzed in statu nascendi derivatization using S-adenosylmethionine (2000) J. Chromatogr. B, 739, pp. 325-335Fiehn, O., Jekel, M., Analysis of phenolic compounds in industrial wastewater with high-performance liquid chromatography and post-column reaction detection (1997) J. Chromatogr. A, 769, pp. 189-200Sotomayor, M.D.P.T., Tanaka, A.A., Kubota, L.T., Tris (2,2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction (2003) Electrochim. Acta, 48, pp. 855-865Carvalho, R.M., Mello, C., Kubota, L.T., Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool (2000) Anal. Chim. Acta, 420, pp. 109-121Mello, L.D., Stomayor, M.D.P.T., Kubota, L.T., HRP-based amperometric biosensor for the polyphenols determination in vegetables extract (2003) Sens. Actuators B: Chem., 96, pp. 636-645Murray, R.W., (1984) Electroanalytical Chemistry, , Bard A.J. (Ed), Marcel Dekker, New YorkRedepenning, J.G., Chemically modified electrodes-a general overview (1987) Tracs-Trends Anal. Chem., 6, pp. 18-22Razmi, H., Agazadeh, M., Habibi-A, B., Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure (2003) J. Electroanal. Chem., 547, pp. 25-33Damos, F.S., Sotomayor, M.D.T., Kubota, L.T., Tanaka, S.M.C.N., Tanaka, A.A., Iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface: an amperometric sensor for phenolic compound determinations (2003) Analyst, 128, pp. 225-259Dempsey, E., Diamond, D., Collier, A., Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film (2004) Biosens. Bioelectron., 20, pp. 367-377Rajesh, W., Kaneto, K., Amperometric tyrosinase based biosensor using an electropolymerized PTS-doped polypyrrole film as an entrapment support (2004) React. Funct. Polym., 59, pp. 163-169Campuzano, S., Serra, B., Pedrero, M., Villena, F.J.M., Pingarrón, J.M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors (2003) Anal. Chim. Acta, 494, pp. 187-197Cosnier, S., Szunerits, S., Markks, R.S., Lellouche, J.P., Perie, K., Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes (2001) J. Biochem. Biophys. Methods, 50, pp. 65-77Dantoni, P., Serrano, S.H.P., Brett, A.M.O., Gutz, J.G.R., Flow-injection determination of catechol with a new tyrosinase/DNA biosensor (1998) Anal. Chim. Acta, 366, pp. 137-145Haghighi, B., Gordon, L., Ruzgas, T., Josson, L.J., Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis (2003) Anal. Chim. Acta, 487, pp. 3-14Izacumen, N., Bouchta, D., Zejli, H., Kaoutit, M.E., Stalcup, A.M., Temsamani, K.R., Electrosynthesis and analytical performances of functionalized poly (pyrrole/β-cyclodextrin) films (2005) Talanta, 66, pp. 111-117Sotomayor, M.D.P.T., Tanaka, A.A., Kubota, L.T., Development of an enzymeless biosensor for the determination of phenolic compounds (2002) Anal. Chim. Acta, 455, pp. 215-223Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode (2004) Talanta, 64, pp. 935-942Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine (PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683Khoo, S.B., John, K.F., Stanley Pons, Electrolyte effects on the cyclic voltammetry of TCNQ and TCNE (1986) J. Electroanal. Chem., 215, pp. 273-285Zhao, S., Lennox, R., Bioelectrocatalysis at organic conducting salt electrodes. Use of hexamethylenetetratellurafulvalene tetracyanoquinodimethane (HMTTeF-TCNQ) as a versatile electrode material (1993) J. Electroanal. Chem., 346, pp. 161-173Melby, L.R., Harder, R.J., Hertler, W.R., Mahler, W., Benson, R.E., Mochel, W.E., Substituted quinodimethans. 2. Anion-radical derivatives and complexes of 7,7,8,8-tetracyanoquinodimethane (1962) J. Am. Chem. Soc., 84, pp. 3374-3387Schwartz, M., Hatfield, W.E., Spectroscopic and magnetic studies of 2 electrically conducting charge-transfer compounds of 7,7,8,8-tetracyanoquinodimethanide with cationic copper-chelates (1987) Inorg. Chem., 26, pp. 2823-2825Zhu, Z., Na-Qiang, L., 9,10-Anthraquinone modified glassy carbon electrode and its application for hemoglobin determination (1998) Electroanalysis, 10, pp. 643-646Magna, A., Salomão, A.A., Vila, M.M.D.C., Tubino, M., Comparative study of two spectrophotometric reagents for catechol analysis in guaraná seeds powder (2003) J. Braz. Chem. Soc., 14, p. 129Pandey, P.C., Upadhyay, S., Pathak, H.C., Pandey, C.M.D., Sensitivity, selectivity and reproducibility of some mediated electrochemical biosensors/sensors (1998) Anal. Lett., 31, pp. 2327-2348Andrieux, C.P., Savéant, J.M., Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions (1978) J. Electroanal. Chem., 93, pp. 163-168Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, Fundamentals and Applications, , Wiley, New YorkDurgbanshi, A., Kok, W.T., Capillary electrophoresis and electrochemical detection with a conventional detector cell (1998) J. Chromatogr. A, 798, pp. 289-296Razmi, H., Agazadeh, M., Habibi-A, B., Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthetized by electroless procedure (2003) J. Electroanal. Chem., 547, pp. 25-33Razmi, H., Azadbakkht, A., Electrochemical characteristic of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode (2005) Electrochim. Acta, 50, pp. 2193-2201Laviron, E., Electrochemical reactions with protonations at equilibrium: part II. The 1e, 1 H+ reaction (four-member square scheme) for a heterogeneous reaction (1981) J. Electroanal. Chem., 124, pp. 1-7Richard, J.A., Whitson, P.E., Evans, D.H., Electrochemical oxidation of 2,4,6-tri-tert-butylphenol (1975) J. Electroanal. Chem., 63, pp. 311-327Papouchado, L., Sandford, R.W., Petrie, G., Adams, R.N., Anodic oxidation pathways of phenolic compounds part 2. Stepwise electron transfers and coupled hydroxylations (1975) J. Electroanal. Chem., 65, pp. 275-284Kim, M.A., Lee, W.Y., Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film (2003) Anal. Chim. Acta, 479, pp. 143-150Analytical Methods Commitee, Recommendations for the definition, estimationand use of the detection limit (1987) Analyst, 112, pp. 199-204Henman, A.R., Guarana (paullinia-cupana var sorbilis)-ecological and social perspectives on an economic plant of the central amazon basin (1982) J. Pharm. Pharmacol., 6, pp. 311-33

    Dna And Graphene As A New Efficient Platform For Entrapment Of Methylene Blue (mb): Studies Of The Electrocatalytic Oxidation Of β-nicotinamide Adenine Dinucleotide

    No full text
    The modification of glassy carbon (GC) electrode with deoxyribonucleic acid (DNA) and grapheneis utilized as a new efficient platform for entrapment of methylene blue (MB). Electrochemical andelectroanalytical properties of the modified electrode (DNA/graphene/MB) were investigated by cyclicvoltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometry techniques. Cyclicvoltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of β-nicotinamide adenine dinucleotide (NADH) at reduced overpotential (0.1 V vs. Ag/AgCl).It has been found that the DNA/graphene/MB modification has significantly enhanced the effective electrode response toward NADH oxidation. Cyclic voltammetry and rotating disk electrode (RDE) exper-iments indicated that the NADH oxidation reaction involves two electrons and an electrocatalytic rateconstant (kobs) of 1.75 × 106mol-1L s-1. The electrochemical sensor presented better performance in0.1 mol L-1phosphate buffer at pH 7.0. Other experimental parameters, such as the DNA, graphene, MB concentrations and the applied potential were optimized. Under optimized conditions, a linear response range from 10 μmol L-1to 1.50 mmol L-1was obtained with a sensitivity of 12.75 μA L μmol -1. The detection and quantification limits for NADH determination were 1.0 μmol L-1and 3.3 μmol L-1, respectively.© 2013 Elsevier Ltd. All rights reserved.111543551Li, Z., Huang, Y., Chen, L., Qin, X., Huang, Z., Zhou, Y., Meng, Y., Yao, S., Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film (2013) Sens. Actuators B, 181, pp. 280-287Creanga, C., El Murr, N., Development of new disposable NADH biosensors based on NADH oxidase (2011) J. Electroanal. Chem., 656, pp. 179-184Gasnier, A., Pedano, M.L., Rubianes, M.D., Rivas, G.A., Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH (2013) Sens. Actuators B, 176, pp. 921-926Dilgina, Y., Kizilkayab, B., Dilginc, D.G., Gökçel, H.I., Gorton, L., Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin (2013) Colloids Surf. B: Biointerfaces, 102, pp. 816-821Teymourianc, H., Salimia, A., Hallaj, R., Low potential detection of NADH basedon Fe3O4nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor (2012) Biosens. Bioelectron., 33, pp. 60-68Yuan, J., Chen, J., Wu, X., Fang, K., Niu, L., A NADH biosensor based on diphenylala-nine peptide/carbon nanotube nanocomposite (2011) J. Electroanal. Chem., 656, pp. 120-124Guo, K., Qian, K., Zhang, S., Kong, J., Yu, C., Liu, B., Bio-electrocatalysis of NAD Hand ethanol based on graphene sheets modified electrodes (2011) Talanta, 85, pp. 1174-1179Chen, C.H., Chen, Y.-C., Lin, M.-S., Amperometric determination of NADH withCo3O 4nanosheet modified electrode (2013) Biosens. Bioelectron., 42, pp. 379-384Canevari, T.C., Vinhas, R.C.G., Landers, R., Gushikem, Y., SiO2/SnO2/Sb2O2micro-porous ceramic material for immobilization of Meldola's blue: Application as anelectrochemical sensor for NADH (2011) Biosens. Bioelectron., 26, pp. 2402-2406Revenga-Parra, M., Gomez-Anquela, C., Garcia-Mendiola, T., Gonzalez, E., Pariente, F., Lorenzo, E., Grafted Azure A modified electrodes as disposable-nicotinamide adenine dinucleotide sensors (2012) Anal. Chim. Acta, 747, pp. 84-91Sharifi, E., Salimi, A., Shams, E., Electrocatalytic activity of nickel oxide nanopar-ticles as mediatorless system for NADH and ethanol sensing at physiological pH solution (2013) Biosens. Bioelectron., 45, pp. 260-266Sun, Y., Ren, Q., Liu, X., Zhao, S., Qin, Y., A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials (2013) Biosens. Bioelectron., 39, pp. 289-295Sosna, M., Bonamore, A., Gorton, L., Boffi, A., Ferapontova, E.E., Direct electro-chemistry and Os-polymer-mediated bioelectrocatalysis of NADH oxidation by Escherichia coli flavohemoglobin at graphiteelectrodes (2013) Biosens. Bioelectron., 42, pp. 219-224Zhaia, X., Li, Y., Liua, G., Cao, Y., Gao, H., Yue, C., Sheng, N., Electropolymerizedtoluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH (2013) Sens. Actuators B, 178, pp. 169-175Ratinac, K.R., Yang, W., Gooding, J.J., Thordarson, P., Braet, F., Graphene and related materials in electrochemical sensing (2011) Electroanalysis, 23, pp. 803-826Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Graphene based electrochemical sensors and biosensors: A review (2010) Electroanalysis, 22, pp. 1027-1036Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224Navaee, A., Salimi, A., Teymourian, H., Graphene nanosheets modified glassy car-bon electrode for simultaneous detection of heroine, morphine and noscapine (2012) Biosens. Bioelectron., 31, pp. 205-211Banhart, F., Kotakoski, J., Krasheninnikov, A.V., Structural defects in graphene (2011) ACS Nano, 5, pp. 26-41Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Processable aqueous dispersions of graphene nanosheets (2008) Nat. Nanotechnol., 3, pp. 101-105Zhang, D., Fu, L., Liao, L., Liu, N., Dai, B., Zhang, C., Preparation, characterization, andapplication of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue (2012) Nano Res., 5, pp. 875-887Luan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S., Chung, J.S., Kim, E.J., Hur, S.H., Synthesis of a highly conductive and large surfacearea graphene oxide hydrogel and its use in a supercapacitor (2013) J. Mater. Chem.A, 1, pp. 208-211Wang, D., Li, Y., Hasin, P., Wu, Y., Preparation, characterization, and electrocat-alytic performance of graphene-methylene blue thin films (2011) Nano Res., 4, pp. 124-130Premkunar, T., Geckeler, K.E., Graphene-DNA hybrid material: Assembly appli-cations and prospects (2012) Progr. Polym. Sci., 37, pp. 515-529Boon, M., Jackson, N.M., Wightman, M.D., Kelley, S.O., Hill, M.G., Barton, J.K., Intercalative stacking: A critical feature of DNA charge-transport electrochemistry (2003) J. Phys. Chem. B, 107, pp. 11805-11812De-Los-Santos-Álvarez, P., Rodríguez-Granda, P., Lobo-Castañón, M.J., Miranda-Ordieres, A.J., Tuñón-Blanco, P., New scheme for electrochemical detectionof DNA based on electrocatalytic oxidation of NADH (2003) Electrochem. Commun., 5, pp. 267-271De-Los-Santos-Álvarez, P., Lobo-Castañón, J.M., Miranda-Ordieres, A.J., Tuñón-Blanco, P., Electrocatalytic oxidation of NADH by Brilliant Cresyl Blue-DNAintercalation adduct (2005) Electrochim. Acta, 50, pp. 1107-1112Rajh, T., Saponjic, Z., Liu, J., Dimitrijevic, N.M., Scherer, N.F., Vega-Arroyo, M., Zapol, P., Thurnauer, M.C., Charge transfer across the nanocrystalline-DNA interface: Probing DNA recognition (2004) Nano Lett., 4, pp. 1017-1023Buzaneva, E., Karlash, A., Yakovkin, K., Shtogun, Y., Putselyk, S., Zherebetskiy, D., Gorchinskiy, A., Eklund, P., DNA nanotechnology of cabon nanotube cells: Physico-chemical models of self-organization and properties (2002) Mater. Sci. Eng. C, 19, pp. 41-45Saito, R., Fujita, M., Dresselhaus, D., Dresselhaus, M., Electronic structure of graphene tubules based on C60 (1992) Phys. Rev. B, 46, pp. 1804-1811Porath, D., Bezryadin, A., De Vries, S., Dekker, C., Direct measurement of electricaltransport through DNA molecules (2000) Nature, 403, pp. 635-638Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80, p. 1339Stankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.T., Ruoff, R.S., Stableaqueous dispersions of graphitic nanoplatelets via the reduction of exfoliatedgraphite oxide in the presence of poly(sodium 4-styrenesulfonate) (2006) J. Mater. Chem., 16, pp. 155-158Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B., A chemical route to graphenefor device applications (2007) Nano Lett., 7, pp. 3394-3398Patil, J., Vickery, J.L., Scott, T.B., Mann, S., Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA (2009) Adv. Mater., 21, pp. 3159-3164Zhang, Q., Qiao, Y., Hao, F., Zhang, L., Wu, S., Li, Y., Li, J., Song, X.-M., Fabrication of a biocompatible and conductive platform based on a single-strandedDNA/graphene nanocomposite for direct electrochemistry and electrocatalysis (2010) Chem. Eur. J., 16, pp. 8133-8139Kumar, S.P., Manjunatha, R., Nethravathi, C., Suresh, G.S., Rajamathi, M., Venkateshac, T.V., Electrocatalytic oxidation of NADH on functionalized graphenemodified graphite electrode (2011) Electroanalysis, 23, pp. 842-849Ju, H., Shen, C., Electrocatalytic reduction and determination of dissolved oxygenat a poly(nile blue) modified electrode (2001) Electroanalysis, 13, pp. 789-793Pheeney, C.G., Barton, J.K., DNA electrochemistry with tethered methylene blue (2012) Langmuir, 28, pp. 7063-7070Maroneze, C.M., Arenas, L.T., Luz, R.C.S., Benvenutti, E.V., Landers, R., Gushikem, Y., Meldola blue immobilized on a new SiO2/TiO2/ graphite composite for electro-catalytic oxidation of NADH (2008) Electrochim. Acta, 53, pp. 4167-4175Varodi, C., Gligor, D., Muresan, L.M., Carbon paste electrodes modified with methylene blue immobilized on a synthetic zeolite (2007) Rev. Roum. Chim., 52, pp. 81-88Luz, R.C.S., Damos, F.S., Oliveira, A.B., Beck, J., Kubota, L.T., Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine(PLL) for dopamine determination (2005) Electrochim. Acta, 50, pp. 2675-2683Yan, Y., Zhang, M., Gong, K., Su, L., Gou, Z., Mao, L., Adsorption of methylene bluedye onto carbon nanotubes: A route to an electrochemically functional nano-structure and its layer-by-layer assembled nanocomposite (2005) Chem. Mater., 17, pp. 3457-3463Anson, F.C., Ohsaka, T., Saveant, J.M., Diffusional pathways for multiply-chargedions incorporated in polyelectrolyte coatings on graphite electrodes. Cobaltoxalate (Co(C 2O4)3 3-) in coatings of protonated polylysine (1983) J. Phys. Chem., 87, pp. 640-647Justino, D.D., Lage, A.L.A., Souto, D.E.P., Silva, J.V., Santosb, W.T.P., Luz, R.C.S., Damos, F.S., Study of the effects of surface pKa and electron transfer kinetics of electroactive 4-nitrothiophenol/4-mercaptobenzoic acid binary SAM on thesimultaneous determination of epinephrine and uric acid (2013) J. Electroanal. Chem, 703, pp. 158-165Souto, D.E.P., Silva, J.V., Martins, H., Reis, A.B., Luz, R.C.S., Kubota, L.T., Damos, F.S., Development of a label-free immunosensor based on surface plasmon reso-nance technique for the detection of anti-Leishmania infantum antibodies incanine serum (2013) Biosens. Bioelectron., 46, pp. 22-29Johnson, R.P., Richardson, J.A., Brown, T., Bartlett, P.N., A label-free, electrochem-ical SERS-based assay for detection of DNA hybridization and discrimination of mutations (2012) J. Am. Chem. Soc., 134, pp. 14099-14107Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.Y., Kawai, T., A review of DNA functionalized/grafted carbon nanotubes and their characterization (2007) Sens. Actuators B: Chem., 122, pp. 672-682Zhu, L., Zhai, J., Yang, R.C.T.I.A.N., Guo, L., Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes (2007) Biosens. Bioelectron., 22, pp. 2768-2773Zare, H.R., Golabi, S.M., Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) (2000) J. Solid State Electrochem., 4, pp. 87-94Doumèche, B., Blum, L.J., NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt (2010) Electrochem. Commun., 12, pp. 1398-1402Radoi, A., Compagnone, D., Valcarcel, M.A., Placidi, P., Materazzi, S., Moscone, D., Palleschi, G., Detection of NADH via electrocatalytic oxidation at single-walledcarbon nanotubes modified with Variamine blue (2008) Electrochim. Acta, 53, pp. 2161-2169Pessoa, C.A., Gushikem, Y., Kubota, L.T., Gorton, L., Preliminary electrochemicalstudy of phenothiazines and phenoxazines immobilized on zirconium phosphate (1997) J. Electroanal. Chem., 431, pp. 23-27Pereira, A.C., Santos, A.S., Kubota, L.T., O-Phenylenediamine adsorbed onto silicagel modified with niobium oxide for electrocatalytic NADH oxidation (2003) Elec-trochim. Acta, 48, pp. 3541-3550Analytical methods committee recommendations for the definition, estimation and use of the detection limit (1987) The Analyst, 112, pp. 199-20

    Development And Evaluation Of A Spr-based Immunosensor For Detection Of Anti-trypanosoma Cruzi Antibodies In Human Serum

    No full text
    Protozoan Trypanosoma cruzi is the etiological agent of Chagas disease, which needs urgent progress in its immunological diagnosis. Surface plasmon resonance (SPR) is a promising technique for the development of immunosensors with biomedical applications. In this work, a SPR-based immunosensor has been developed by the first time for real time and label free immunoassay for detection of anti-T. cruzi antibodies in serum samples. T. cruzi antigen was successfully immobilized on a SPR sensor chip via activated mixed self-assembled monolayer (SAM) of 3-mercaptopropionic acid (3-MPA) and 11-mercaptoundecanoic acid (11-MUA), by amide coupling. After the sensor construction, a pool of human sera infected with T. cruzi was added to its surface and the antibodies were detected in sera diluted up to 1280 times, indicating excellent sensitivity of the technique for detection of antigen-antibody interaction. The addition of a pool of negative human serum at dilutions lower than 1:160 to the sensor surface was accompanied by a null or very low response. Then, the following operational parameters of the immunoassay were optimized and defined: time of immobilization and antigen concentration at 20 min and 30 mg mL-1, serum dilution at 1:320, preventing of nonspecific bindings with solution of BSA 1.0% and surface regeneration by injection of SDS 1.0%. The immunoassay, here termed SPRCruzi, showed high capability in the discrimination of positive and negative sera, including those infected with other pathogens usually sources of false positives results in conventional serodiagnosis. Therefore, the proposed immunosensor was successfully developed and the immunoassay allowed a simple, effective, faster and specific detection of anti-T. cruzi antibodies, which represents an encouraging field for the progress of the diagnosis of Chagas disease.212287296Chagas, C., Nova tripanosomíase humana: Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypaum cruzi, agente etiológico de nova entidade mórbida do homem (1909) Mem. Inst. Oswaldo Cruz, 1, pp. 159-218Coura, J.R., Borges-Pereira, J., Chagas disease: 100 years after its discovery. A systemic review (2010) Acta Trop., 115, pp. 5-13Hotez, P., Ottesen, E., Fenwick, A., Molyneux, D., The neglected tropical diseases: The ancient afflictions of stigma and poverty and the prospects for their control and elimination (2006) Hot Topics in Infection and Immunity in Children, pp. 23-33. , A.J. Pollard, A. Finn, Springer New YorkMoncayo, A., Silveira, A.C., Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy (2009) Mem. Inst. Oswaldo Cruz, 104, pp. 17-30Rassi-Júnior, A., Rassi, A., Marin-Neto, J.A., Chagas disease (2010) Lancet, 375, pp. 1388-1402Coura, J.R., Viñas, P.A., Chagas disease: A new worldwide challenge (2010) Nature, 465, pp. 6-7Health Organization, W., (2002) Control of Chagas' Disease, World Health Organ. Tech. Rep. Ser., 905, pp. 1-109Coura, J.R., Borges-Pereira, J., What is known and what should be improved: A systemic review (2012) Rev. Soc. Bras. Med. Trop., 45, pp. 286-296Sans Frontières, M., International meeting: New diagnostic tests are urgently needed to treat patients with Chagas disease (2008) Rev. Soc. Bras. Med. Trop., 41, pp. 315-319Skottrup, P.D., Nocolaisen, M., Justesen, A.F., Towards on-site pathogen detection using antibody-based sensors (2008) Biosens. Bioelectron., 24, pp. 339-348Kumbhat, S., Sharma, K., Gehlot, R., Solanki, A., Joshi, V., Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection (2010) J. Pharm. Biomed. Anal., 52, pp. 255-259Souto, D.E.P., Silva, J.V., Martins, H.R., Reis, A.B., Luz, R.C.S., Kubota, L.T., Damos, F.S., Development of a label free immunosensor based on surface plasmon resonance technique for the detection of anti-Leishmania infantum antibodies in canine serum (2013) Biosens. Bioeletron., 46, pp. 22-29Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275Santos, L.S., Torres, R.M., Machado-De-Assis, G.F., Bahia, M.T., Martins, H.R., Teixeira-Carvalho, A., Coelho-Dos-Reis, J.G.A., Lana, M., In-house ELISA method to analyze anti-Trypanosoma cruzi IgG reactivity for differential diagnosis and evaluation of Chagas disease morbidity (2012) Rev. Soc. Bras. Med. Trop., 45, pp. 35-44Dawan, S., Kanatharana, P., Chotigeat, W., Jitsurong, S., Thavarungkul, P., Surface plasmon resonance immunosensor for rapid and specific diagnosis of melioidosis antibody (2011) Southeast Asian J. Trop. Med. Publ. Health, 42, pp. 1168-1177Wu, H., Li, H., Chua, F.Z.H., Li, S.F.Y., Rapid detection of melamine based on immunoassay using portable surface plasmon resonance biosensor (2013) Sens. Actuators B, 178, pp. 541-546Mauriz, E., Calle, A., Montoya, A., Lechuga, L.M., Determination of environmental organic pollutants with a portable optical immunosensor (2006) Talanta, 69, pp. 359-364Treviño, J., Calle, A., Rodríguez-Frade, J.M., Mellado, M., Lechuga, L.M., Single- and multi-analyte determination of gonadotropic hormones in urine by surface plasmon resonance immunoassay (2009) Anal. Chim. Acta, 647, pp. 202-209Yu, Q., Chen, S., Taylor, A.D., Homola, J., Hock, B., Jiang, S., Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor (2005) Sens. Actuators B, 107, pp. 193-201Shankaran, D.R., Gobi, K.V., Miura, N., Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest (2007) Sens. Actuators B, 121, pp. 158-177Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species (2008) Chem. Rev., 108, pp. 462-493Löfas, S., Whirter, M., The art of immobilization for SPR sensors (2006) Surface Plasmon Resonance Based Sensors, pp. 3-44. , J. Homola, O.S. Wolfbeis, Springer New YorkKim, S.J., Gobi, K.V., Iwasaka, H., Tanaka, H., Miura, N., Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes (2007) Biosens. Bioeletron., 23, pp. 701-707Subramanian, A., Irudayaraj, J., Ryan, T., A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. Coli O157:H7 (2006) Biosens. Bioelectron., 21, pp. 998-1006(2007) WHO Consultation on International Biological Reference Preparations for Chagas Diagnostic Tests, , http://www.who.int/bloodproducts/ref_materials/WHO_Report_1st_Chagas_BRP_consultation_7-2007_final.pdf, World Health Organization (accessed 19.09.14)Voller, A., Draper, C., Bidwell, D.E., Bartlett, A., Microplate enzyme-linked immunosorbent assay (ELISA) for Chagas disease (1975) Lancet, 1, pp. 426-429Holford, T.R.J., Davis, F., Higson, S.P.J., Recent trends in antibody detection (2012) Biosens. Bioeletron., 34, pp. 12-24Negrette, O.S., Valdez, F.J.S., Lacunza, C.D., Bustos, M.F.G., Mora, M.C., Uncos, A.D., Basombrío, M.A., Serological evaluation of specific-antibody levels in patients treated for chronic Chagas' disease (2008) Clin. Vaccine Immunol., 15, pp. 297-302Lana, M., Lopes, L.A., Martins, H.R., Bahia, M.T., Machado-De-Assis, G.F., Wendling, A.P., Martins-Filho, O.A., Coura, J.R., Clinical and laboratory status of patients with chronic Chagas disease living in a vector-controlled area in Minas Gerais, Brazil, before and nine years after etiological treatment (2009) Mem. Inst. Oswaldo Cruz, 104, pp. 1139-1147Oss, C.J., Antigen-antibody detection (1992) Structure of Antigens, pp. 99-121. , M.V.H. Van Regenmortel, CRC Press Boca RatonPaynter, S., Russell, D.A., Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: Conformational change or electrostatic interaction effects? (2002) Anal. Biochem., 309, pp. 85-95Dutra, R.F., Mendes, R.K., Silva, V.L., Kubota, L.T., Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer (2007) J. Pharm. Biomed. Anal., 43, pp. 1744-1750Ribone, E.M., Belluzo, M.S., Pagani, D., Macipar, I.S., Lagier, C.M., Amperometric bioelectrode for specific human immunoglobulin G determination: Optimization of the method to diagnose American trypanosomiasis (2006) Anal. Biochem., 350, pp. 61-70Caballero, Z.C., Marques, W.P., Saez-Alquezar, A., Umezawa, E.S., Evaluation of serological tests to identify Trypanosoma cruzi infection in humans and determine cross-reactivity with Trypanosoma rangeli and Leishmania spp (2007) Clin. Vaccine Immunol., 14, pp. 1045-1049Soelberg, S.D., Chinowsky, T., Geiss, G., Spinelli, C.B., Near, R.S.S., Kauffman, P., Yee, S., Furlong, C.E., A portable surface plasmon resonance sensor system for real-time monitoring of small to large analytes (2005) J. Ind. Microbiol. Biotechnol., 32, pp. 669-874Preechaburana, P., Gonzalez, M.C., Suska, A., Filippini, D., Surface plasmon resonance chemical sensing on cell phones (2012) Angew. Chem. Int. Ed., 51, pp. 11585-11588Sasagawa, E., Guevara De Aguilar, A.V., Hernández De Ramírez, M.A., Romero Chévez, J.E., Nakagawa, J., Cedillos, R.A., Misago, C., Kita, K., Prevalence of Trypanosoma cruzi infection in blood donors in El Salvador between 2001 and 2011 (2014) J. Infect. Dev. Ctries., 8, pp. 1029-103
    corecore