14 research outputs found

    Retinal basal laminar deposits in complement fH/fP mouse model of dense deposit disease

    Get PDF
    Purpose: Dense deposit disease (DDD) is caused by dysregulation of the alternative pathway of the complement cascade and characterized by electron-dense deposits in the kidney glomerular basement membrane (GBM) and drusen in Bruch's membrane (BrM). Complement factor H (fH) and factor properdin (fP) regulate complement activation; fH inhibits alternative pathway (AP) activation, whereas fP promotes it. We report pathologic changes in eyes of an fH and fP double-mutant mouse, which we previously showed have dense deposits in the GBM and early mortality from nephropathy.Methods: fHm/m, fP−/−, and fHm/m/fP−/− mice were generated on a C57BL/6–129J background. Fundus imaging at 8 weeks of age was followed by analysis via light and electron microscopy. Retinal function was assessed by electroretinography (ERG). Complement levels and localization were tested by immunohistochemistry and ELISA. Retinas of fHm/m/fP−/− mice treated with intraperitoneal injections of an anti-C5 antibody were compared to those of age- and genotype-matched mice injected with an isotype control antibody.Results: fHm/m/fP−/− mice suffered early-onset retinal hypopigmented spots detected using in vivo retinal photography, and histologic examination showed basal laminar deposits (BLamD), degeneration of the photoreceptors, and RPE vacuolization. ERG showed diminished retinal function. The anti-C5 antibody was retina-protective.Conclusions: This unique mouse represents a new model of complement-mediated rapid-onset DDD, and could be useful in exploring the pathologic changes associated with BLamD in age-related macular degeneration

    Cloning and expression of fat body hexamerin receptor and its identification in other hexamerin sequestering tissue of rice moth, Corcyra cephalonica

    No full text
    Selective receptor mediated uptake is a widely prevalent mechanism in insects by which important macromolecules are acquired. Among the various proteins sequestered by the insect fat body, the larval hexamerins form the major group. In the present work full length cDNA (2.6 kb) of hexamerin receptor with an ORF of 2.4 kb was cloned from the larval fat body of rice moth, Corcyra cephalonica. This was followed by the recombinant expression of truncated N-terminal sequence of putative hexamerin receptor and the confirmation of the expressed recombinant protein as the truncated hexamerin receptor by ligand blot analysis. Apart from this we also analyzed other hexamerin sequestering tissues like salivary gland, male accessory reproductive gland and ovary for the presence of hexamerin receptor. We found that the receptor in these tissues was similar in size and mode of activation to that of fat body hexamerin receptor, thus cementing the fact that identical hexamerin receptors are present in all the hexamerin sequestering tissues in the rice moth

    Ecdysteroid-mediated expression of hexamerin (arylphorin) in the rice moth, Corcyra cephalonica

    No full text
    The insect development is intricately controlled by morphogenetic hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E) through the regulation of gene/protein expression. The role of hexamerins in the metamorphosis of insects and reproduction and their control by 20E at the gene level has been widely reported in insects. In the present study we for the first time report the role of ecdysteroids in the regulation of hexamerin synthesis in a lepidopteran insect Corcyra cephalonica. The hormonal studies were carried out using the normal and the thorax-ligated insects with both 20E and its non-steroidal agonist RH-5992. The in vitro as well as in vivo studies showed a stimulatory effect of 20E and its agonist on the hexamerin synthesis including arylphorin (Hex 2), whereas hormone blockade with azadirachtin caused a time dependent reduction in synthesis. The northern analysis using Hex 2b cDNA as probe too confirmed the above result. This was followed by the cloning of the Hex 2b gene. The full length of the genomic clone was found to be 3.5 kb long and has four exons interspersed by three introns. The genome walking analysis revealed the presence of a steroid hormone binding sequence "Ecdysone response element" (EcRE) in the 5' untranscribed region (UTR) of the gene. The data presented in this paper clearly suggest that hexamerin synthesis in C. cephalonica is transcriptionally regulated by 20E

    Significance of the 19-kDa hemolymph protein HP19 for the development of the rice moth Corcyra cephalonica: morphological and biochemical effects caused by antibody application

    No full text
    The hemolymph protein HP19 of the rice moth, Corcyra cephalonica, mediates the 20-hydroxyecdysone (20E)-dependent acid phosphatase (ACP) activity at a nongenomic level. Affinity-purified polyclonal antibody against HP19 (αHP19-IgG) was used in the present study to understand the role of HP19 during the postembryonic development of Corcyra. In the in vitro studies, HP19 action was blocked either by immuno-precipitation using αHP19-IgG, prior to its addition to the fat body culture or by the addition of the antibody directly to the culture, along with 20E and hemolymph containing HP19. The αHP19-IgG blocked the HP19-mediated 20E-dependent ACP activation. In the in vivo studies, the αHP19-IgG was injected into the fully developed last (final/Vth) instar larvae of Corcyra, to complex the HP19 in vivo, in order to block the action of HP19. The injection of αHP19-IgG resulted in defective development of larvae, which grew either into non-viable larvae or larval-pupal/pupal-adult intermediates relative to the effect of pre-immune IgG injected controls. The present study shows that HP19 plays an important role in controlling the metamorphosis of Corcyra by regulating the 20E-dependent ACP activity. Coupled with the earlier findings, the ecdysteroid hormone regulates this action at a nongenomic level

    Identification of a developmentally and hormonally regulated Delta-Class glutathione S-transferase in rice moth Corcyra cephalonica

    No full text
    Glutathione S-transferases (GSTs) are a large family of multifunctional enzymes, known for their role in cellular detoxification. Here we report a cytosolic GST with optimal activity at alkaline pH (8.3) from the visceral fat body of late-last instar (LLI) larvae of a lepidopteran insect rice moth Corcyra cephalonica. All previously known GSTs are active between pH 6.0 to 6.5. Purification and characterization revealed the Corcyra cephalonica GST (CcGST) as a 23-kDa protein. HPLC and 2D analysis showed a single isoform of the protein in the LLI visceral fat body. Degenerate primer based method identified a 701-nucleotide cDNA and the longest open reading frame contained 216 amino acids. Multiple sequence and structural alignment showed close similarity with delta-class GSTs. CcGST is present mainly in the fat body with highest activity at the late-last instar larval stage. Juvenile hormone (JH) negatively inhibits the CcGST activity both ex vivo and in vivo. We speculate that high expression and activity of CcGST in the fat body of the late-last instar larvae, when endogenous JH titer is low may have role in the insect post-embryonic development unrelated to their previously known function

    Properdin Contributes to Allergic Airway Inflammation through Local C3a Generation

    No full text
    Complement is implicated in asthma pathogenesis, but its mechanism of action in this disease remains incompletely understood. In this study, we investigated the role of properdin (P), a positive alternative pathway complement regulator, in allergen-induced airway inflammation. Allergen challenge stimulated P release into the airways of asthmatic patients, and P levels positively correlated with proinflammatory cytokines in human bronchoalveolar lavage (BAL). High levels of P were also detected in the BAL of OVA-sensitized and challenged but not naive mice. Compared with wild-type (WT) mice, P-deficient (P(-/-)) mice had markedly reduced total and eosinophil cell counts in BAL and significantly attenuated airway hyperresponsiveness to methacholine. Ab blocking of P at both sensitization and challenge phases or at challenge phase alone, but not at sensitization phase alone, reduced airway inflammation. Conversely, intranasal reconstitution of P to P(-/-) mice at the challenge phase restored airway inflammation to wild-type levels. Notably, C3a levels in the BAL of OVA-challenged P(-/-) mice were significantly lower than in wild-type mice, and intranasal coadministration of an anti-C3a mAb with P to P(-/-) mice prevented restoration of airway inflammation. These results show that P plays a key role in allergen-induced airway inflammation and represents a potential therapeutic target for human asthma
    corecore