7 research outputs found

    New Science on the Open Science Grid

    Get PDF
    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement and the distributed facility. As a partner to the poster and tutorial at SciDAC 2008, this paper gives both a brief general description and some specific examples of new science enabled on the OSG. More information is available at the OSG web site: (http://www.opensciencegrid.org)

    Thermodynamic stability and structure in aqueous solution of the [Cu(PTA)4]+ complex (PTA\u202f=\u202faminophosphine\u20111,3,5\u2011triaza\u20117\u2011phosphaadamantane)

    No full text
    The chemistry of copper(I) with water-soluble phosphines is an emergent area of study which has the objective of finding ligands that stabilize copper in its lower oxidation state. Cu(I) has been found relevant in the mechanism of copper transports into cells, and the accessibility of this oxidation state has implications in oxidative stress processes. For these reasons the possibility to deal with stable, water soluble copper(I) is an attractive approach for devising new biologically relevant metal-based drugs and chelating agents. Here we present the X-ray absorption spectroscopy (XAS) and UV\u2013visible spectrophotometric study of the [Cu(PTA)4]BF4 complex (PTA = aminophosphine\u20111,3,5\u2011triaza\u20117\u2011phosphaadamantane). In particular, we have studied the stability of the [Cu(PTA)n]+ species (n = 2\u20134) in aqueous medium, and their speciation as a function of the total [Cu(PTA)4]BF4 concentration by means of competitive UV\u2013visible spectrophotometric titrations using metallochromic indicators. Also, the structure in solution of the Cu(I)/PTA species and the nature of the first coordination sphere of the metal were studied by transformed XAS. Both techniques allowed to study samples with total [Cu(PTA)4]BF4 concentration down to 68\u201374 \u3bcM, possibly relevant for biological applications. Overall, our data suggest that the [Cu(PTA)n]+ species are stable in solution, among which [Cu(PTA)2]+ has a remarkable thermodynamic stability. The tendency of this last complex to form adducts with N-donor ligands is demonstrated by the spectrophotometric data. The biological relevance of PTA towards Cu(I), especially in terms of chemotreatments and chelation therapy, is discussed on the basis of the speciation model the Cu(I)/PTA syste

    Fat intake and cardiovascular response

    Full text link
    High dietary fat intake is a major risk factor for the development of obesity, which is frequently associated with diseases such as hypertension and diabetes and thus accelerated atherosclerosis. Angiotensin II and endothelin-1 are powerful growth factors and vasoconstrictors implicated in regulating vascular tone, vascular structure, and inflammation. Reduced bioactivity of nitric oxide and increased formation of reactive oxygen species (ROS) have been associated with obesity and high dietary fat intake. This article reviews the effects of high-fat diet on vascular functional changes in rodents and humans. Changes include alterations in vasoconstrictor function and receptor expression, and modulators of endothelium-dependent vascular tone (eg, nitric oxide- or endothelium-dependent contracting factor-mediated responses). Novel vasodilator effects of ROS and the anatomic heterogeneity of vascular responses are discussed. The beneficial effects of vasoactive mediators on vascular function could play a role for susceptibility to obesity-dependent hypertension, which is present in many, but not all, obese patients
    corecore