231 research outputs found

    Low voltage polymer network liquid crystal for infrared spatial light modulators

    Get PDF
    We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2 pi phase change voltage to 22.8V at 1.55 mu m wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable

    Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites

    Get PDF
    The majority of polymers are electrical and thermal insulators. In order to create electrically active and thermally conductive polymers and composites, the hybrid-filler systems is an effective approach, i.e. combining different types of fillers with different dimensions, in order to facilitate the formation of interconnected conducting networks and to enhance the electrical, thermal, mechanical and processing properties synergistically. By tailoring polymer-filler interactions both thermodynamically and kinetically, the selective localisation of fillers in polymer blends and at the interface of co-continuous polymer blends can enhance the electrical conductivity at a low percolation threshold. Moreover, selective localisation of different filler types in different co-continuous phases can result in multiple functionalities, such as high electrical conductivity, thermal conductivity or electromagnetic interference shielding. In this review, we discuss the latest progress towards the development of electrically active and thermally conductive polymer composites, and highlight the technical challenges and future research directions

    Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal

    Get PDF
    We propose a switchable phase grating using fringe field switching (FFS) cells. The FFS phase grating possesses several attractive features: large diffraction angle, high diffraction efficiency, fast response time, and high contrast ratio. It can diffract \u3e 32% light to +/- 2nd orders with a large diffraction angle of 12.1 degrees. Meanwhile, its response time remains relatively fast even at -40 degrees C. A simulation model is developed to explain the experimental results and good agreement is obtained. We also demonstrate a blazed phase grating to achieve tunable beam steering between 0th, 1st and 2nd orders

    Morphometric characterisation of landform from DEMs

    Full text link
    We describe a method of morphometric characterisation of landform from DEMs. The method is implemented by first classifying every location into morphometric classes based on the mathematical shape of a locally fitted quadratic surface and its positional relationship with the analysis window. Single-scale fuzzy terrain indices of peakness, pitness, passness, ridgeness, and valleyness are then calculated based on the distance of the analysis location from the ideal cases. These can then be combined into multi-scale terrain indices to summarise terrain information across different operational scales. The algorithm has four characteristics: (1) the ideal cases of different geomorphometric features are simply and clearly defined; (2) the output is spatially continuous to reflect the inherent fuzziness of geomorphometric features; (3) the output is easily combined into a multi-scale index across a range of operational scales; and (4) the standard general morphometric parameters are quantified as the first and second order derivatives of the quadratic surface. An additional benefit of the quadratic surface is the derivation of the R2 goodness of fit statistic, which allows an assessment of both the reliability of the results and the complexity of the terrain. An application of the method using a test DEM indicates that the single- and multi-scale terrain indices perform well when characterising the different geomorphometric features

    Computational identification of rare codons of Escherichia coli based on codon pairs preference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon bias is believed to play an important role in the control of gene expression. In <it>Escherichia coli</it>, some rare codons, which can limit the expression level of exogenous protein, have been defined by gene engineering operations. Previous studies have confirmed the existence of codon pair's preference in many genomes, but the underlying cause of this bias has not been well established. Here we focus on the patterns of rarely-used synonymous codons. A novel method was introduced to identify the rare codons merely by codon pair bias in <it>Escherichia coli</it>.</p> <p>Results</p> <p>In <it>Escherichia coli</it>, we defined the "rare codon pairs" by calculating the frequency of occurrence of all codon pairs in coding sequences. Rare codons which are disliked in genes could make great contributions to forming rare codon pairs. Meanwhile our investigation showed that many of these rare codon pairs contain termination codons and the recognized sites of restriction enzymes. Furthermore, a new index (F<sub>rare</sub>) was developed. Through comparison with the classical indices we found a significant negative correlation between F<sub>rare </sub>and the indices which depend on reference datasets.</p> <p>Conclusions</p> <p>Our approach suggests that we can identify rare codons by studying the context in which a codon lies. Also, the frequency of rare codons (F<sub>rare</sub>) could be a useful index of codon bias regardless of the lack of expression abundance information.</p

    Mechanically enhanced electrical conductivity of polydimethylsiloxane-based composites by a hot embossing process

    Get PDF
    Electrically conductive polymer composites are in high demand for modern technologies, however, the intrinsic brittleness of conducting conjugated polymers and the moderate electrical conductivity of engineering polymer/carbon composites have highly constrained their applications. In this work, super high electrical conductive polymer composites were produced by a novel hot embossing design. The polydimethylsiloxane (PDMS) composites containing short carbon fiber (SCF) exhibited an electrical percolation threshold at 0.45 wt % and reached a saturated electrical conductivity of 49 S/m at 8 wt % of SCF. When reducing the sample thickness from 1.0 to 0.1 mm by the hot embossing process, a compression-induced percolation threshold occurred at 0.3 wt %, while the electrical conductivity was further enhanced to 378 S/m at 8 wt % SCF. Furthermore, the addition of a second nanofiller of 1 wt %, such as carbon nanotube or conducting carbon black, further increased the electrical conductivity of the PDMS/SCF (8 wt %) composites to 909 S/m and 657 S/m, respectively. The synergy of the densified conducting filler network by the mechanical compression and the hierarchical micro-/nano-scale filler approach has realized super high electrically conductive, yet mechanically flexible, polymer composites for modern flexible electronics applications

    Blue phase liquid crystals stabilized by linear photo-polymerization

    Get PDF
    Stabilizing a photopolymer-embedded blue phase liquid crystal precursor with linearly polarized UV light is investigated experimentally. When the UV polarization axis is perpendicular to the stripe electrodes of an in-plane-switching cell, anisotropic polymer networks are formed through the linear photo-polymerization process and the electrostriction effect is suppressed. As a result, the measured hysteresis is dramatically reduced from 6.95% to 0.36% and the response time shortened by similar to 2x compared to unpolarized UV exposure. To induce larger anisotropy in polymer networks for mitigating the electrostriction effect, high-intensity linearly polarized UV exposure is preferred

    Angular dependent reflections of a monodomain blue phase liquid crystal

    Get PDF
    The angular dependent reflection of a monodomain blue phase liquid crystal (BPLC) is investigated. Unlike a cholesteric liquid crystal with single twist structure, a monodomain BPLC exhibits several reflection orders from different crystal planes. As incident angle increases, the first order reflection experiences a blue shift while the second order experiences a red shift. We analyze the physical mechanism of the reflection from six (110) crystal planes. Good agreement between calculated and experimental results is obtained. Undoubtedly, this angular dependency would affect the performance of BPLC photonic devices that require an oblique incidence

    Ultrafast Spin-To-Charge Conversion at the Surface of Topological Insulator Thin Films

    Full text link
    Strong spin-orbit coupling, resulting in the formation of spin-momentum-locked surface states, endows topological insulators with superior spin-to-charge conversion characteristics, though the dynamics that govern it have remained elusive. Here, we present an all-optical method that enables unprecedented tracking of the ultrafast dynamics of spin-to-charge conversion in a prototypical topological insulator Bi2_2Se3_3/ferromagnetic Co heterostructure, down to the sub-picosecond timescale. Compared to pure Bi2_2Se3_3 or Co, we observe a giant terahertz emission in the heterostructure than originates from spin-to-charge conversion, in which the topological surface states play a crucial role. We identify a 0.12-picosecond timescale that sets a technological speed limit of spin-to-charge conversion processes in topological insulators. In addition, we show that the spin-to-charge conversion efficiency is temperature independent in Bi2_2Se3_3 as expected from the nature of the surface states, paving the way for designing next-generation high-speed opto-spintronic devices based on topological insulators at room temperature.Comment: 19 pages, 4 figure
    • …
    corecore