73 research outputs found

    Laplacian transfer across a rough interface: Numerical resolution in the conformal plane

    Full text link
    We use a conformal mapping technique to study the Laplacian transfer across a rough interface. Natural Dirichlet or Von Neumann boundary condition are simply read by the conformal map. Mixed boundary condition, albeit being more complex can be efficiently treated in the conformal plane. We show in particular that an expansion of the potential on a basis of evanescent waves in the conformal plane allows to write a well-conditioned 1D linear system. These general principle are illustrated by numerical results on rough interfaces

    Modeling the mechanics of amorphous solids at different length and time scales

    Full text link
    We review the recent literature on the simulation of the structure and deformation of amorphous glasses, including oxide and metallic glasses. We consider simulations at different length and time scales. At the nanometer scale, we review studies based on atomistic simulations, with a particular emphasis on the role of the potential energy landscape and of the temperature. At the micrometer scale, we present the different mesoscopic models of amorphous plasticity and show the relation between shear banding and the type of disorder and correlations (e.g. elastic) included in the models. At the macroscopic range, we review the different constitutive laws used in finite element simulations. We end the review by a critical discussion on the opportunities and challenges offered by multiscale modeling and transfer of information between scales to study amorphous plasticity.Comment: 58 pages, 14 figure

    Quantitative prediction of effective toughness at random heterogeneous interfaces

    Full text link
    The propagation of an adhesive crack through an anisotropic heterogeneous interface is considered. Tuning the local toughness distribution function and spatial correlation is numerically shown to induce a transition between weak to strong pinning conditions. While the macroscopic effective toughness is given by the mean local toughness in case of weak pinning, a systematic toughness enhancement is observed for strong pinning (the critical point of the depinning transition). A self-consistent approximation is shown to account very accurately for this evolution, without any free parameter

    Avalanches, precursors and finite size fluctuations in a mesoscopic model of amorphous plasticity

    Get PDF
    We discuss avalanche and finite size fluctuations in a mesoscopic model to describe the shear plasticity of amorphous materials. Plastic deformation is assumed to occur through series of local reorganizations. Yield stress criteria are random while each plastic slip event induces a quadrupolar long range elastic stress redistribution. The model is discretized on a regular square lattice. Shear plasticity can be studied in this context as a depinning dynamic phase transition. We show evidence for a scale free distribution of avalanches P(s)SκP(s)\propto S^{-\kappa} with a non trivial exponent κ1.25\kappa \approx 1.25 significantly different from the mean field result κ=1.5\kappa = 1.5. Finite size effects allow for a characterization of the scaling invariance of the yield stress fluctuations observed in small samples. We finally identify a population of precursors of plastic activity and characterize its spatial distribution

    Material independent crack arrest statistics

    Full text link
    The propagation of (planar) cracks in a heterogeneous brittle material characterized by a random field of toughness is considered, taking into account explicitly the effect of the crack front roughness on the local stress intensity factor. In the so-called strong-pinning regime, the onset of crack propagation appears to map onto a second-order phase transition characterized by universal critical exponents which are independent of the local characteristics of the medium. Propagation over large distances can be described by using a simple one-dimensional description, with a correlation length and an effective macroscopic toughness distribution that scale in a non-trivial fashion with the crack front length. As an application of the above concepts, the arrest of indentation cracks is addressed, and the analytical expression for the statistical distribution of the crack radius at arrest is derived. The analysis of indentation crack radii on alumina is shown to obey the predicted algebraic expression for the radius distribution and its dependence on the indentation load

    Cracks in random brittle solids: From fiber bundles to continuum mechanics

    Get PDF
    Statistical models are essential to get a better understanding of the role of disorder in brittle disordered solids. Fiber bundle models play a special role as a paradigm, with a very good balance of simplicity and non-trivial effects. We introduce here a variant of the fiber bundle model where the load is transferred among the fibers through a very compliant membrane. This Soft Membrane fiber bundle mode reduces to the classical Local Load Sharing fiber bundle model in 1D. Highlighting the continuum limit of the model allows to compute an equivalent toughness for the fiber bundle and hence discuss nucleation of a critical defect. The computation of the toughness allows for drawing a simple connection with crack front propagation (depinning) models.Comment: The European Physical Journal Special Topics Special Topics, 201

    From depinning transition to plastic yielding of amorphous media: A soft modes perspective

    Get PDF
    A mesoscopic model of amorphous plasticity is discussed in the context of depinning models. After embedding in a d + 1 dimensional space, where the accumulated plastic strain lives along the additional dimension, the gradual plastic deformation of amorphous media can be regarded as the motion of an elastic manifold in a disordered landscape. While the associated depinning transition leads to scaling properties, the quadrupolar Eshelby interactions at play in amorphous plasticity induce specific additional features like shear-banding and weak ergodicity breakdown. The latters are shown to be controlled by the existence of soft modes of the elastic interaction, the consequence of which is discussed in the context of depinning
    corecore