177 research outputs found

    Social information use shapes the coevolution of sociality and virulence

    Get PDF

    Compromise or choose: shared movement decisions in wild vulturine guineafowl

    Get PDF
    Shared-decision making is beneficial for the maintenance of group-living. However, little is known about whether consensus decision-making follows similar processes across different species. Addressing this question requires robust quantification of how individuals move relative to each other. Here we use high-resolution GPS-tracking of two vulturine guineafowl (Acryllium vulturinum) groups to test the predictions from a classic theoretical model of collective motion. We show that, in both groups, all individuals can successfully initiate directional movements, although males are more likely to be followed than females. When multiple group members initiate simultaneously, follower decisions depend on directional agreement, with followers compromising directions if the difference between them is small or choosing the majority direction if the difference is large. By aligning with model predictions and replicating the findings of a previous field study on olive baboons (Papio anubis), our results suggest that a common process governs collective decision-making in moving animal groups

    Using optimal foraging theory to infer how groups make collective decisions

    Full text link
    A growing body of evidence emerging from the analysis of advanced animal tracking data shows that moving groups make shared decisions about where to go, with each group member influencing the outcome. How groups coordinate departure decisions (when to go), however, remains poorly understood. Classic models from optimal foraging theory, specifically the marginal value theorem (MVT), are well-established tools that can generate quantitative predictions about when individuals should prefer to leave a food patch, given patch quality and the distribution of patches in the environment. Integrating optimal foraging theory into studies of animal collectives provides rich opportunities for gaining new insights from both empirical and theoretical studies. Specifically, the MVT can be used to make predictions about conflict of interests among group members, how consensus costs vary under different models of collective decision-making, and under what environmental conditions shared decision-making may be favored or disfavored

    Group-level differences in social network structure remain repeatable after accounting for environmental drivers

    Full text link
    Individuals show consistent between-individual behavioural variation when they interact with conspecifics or heterospecifics. Such patterns might underlie emergent group-specific behavioural patterns and between-group behavioural differences. However, little is known about (i) how social and non-social drivers (external drivers) shape group-level social structures and (ii) whether animal groups show consistent between-group differences in social structure after accounting for external drivers. We used automated tracking to quantify daily social interactions and association networks in 12 colonies of zebra finches (Taeniopygia guttata). We quantified the effects of five external drivers (group size, group composition, ecological factors, physical environments and methodological differences) on daily interaction and association networks and tested whether colonies expressed consistent differences in day-to-day network structure after controlling for these drivers. Overall, we found that external drivers contribute significantly to network structure. However, even after accounting for the contribution of external drivers, there remained significant support for consistent between-group differences in both interaction (repeatability R: up to 0.493) and association (repeatability R : up to 0.736) network structures. Our study demonstrates how group-level differences in social behaviour can be partitioned into different drivers of variation, with consistent contributions from both social and non-social factors

    Variation in local population size predicts social network structure in wild songbirds

    Get PDF
    The structure of animal societies is a key determinant of many ecological and evolutionary processes. Yet, we know relatively little about the factors and mechanisms that underpin detailed social structure. Among other factors, social structure can be influenced by habitat configuration. By shaping animal movement decisions, heterogeneity in habitat features, such as vegetation and the availability of resources, can influence the spatiotemporal distribution of individuals and subsequently key socioecological properties such as the local population size and density. Differences in local population size and density can impact opportunities for social associations and may thus drive substantial variation in local social structure. Here, we investigated spatiotemporal variation in population size at 65 distinct locations in a small songbird, the great tit (Parus major) and its effect on social network structure. We first explored the within‐location consistency of population size from weekly samples and whether the observed variation in local population size was predicted by the underlying habitat configuration. Next, we created social networks from the birds' foraging associations at each location for each week and examined if local population size affected social structure. We show that population size is highly repeatable within locations across weeks and years and that some of the observed variation in local population size was predicted by the underlying habitat, with locations closer to the forest edge having on average larger population sizes. Furthermore, we show that local population size affected social structure inferred by four global network metrics. Using simple simulations, we then reveal that much of the observed social structure is shaped by social processes. Across different population sizes, the birds' social structure was largely explained by their preference to forage in flocks. In addition, over and above effects of social foraging, social preferences between birds (i.e. social relationships) shaped certain network features such as the extent of realized social connections. Our findings thus suggest that individual social decisions substantially contribute to shaping certain social network features over and above effects of population size alone

    Early-life social environment predicts social network position in wild zebra finches

    Get PDF
    Early-life experience can fundamentally shape individual life-history trajectories. Previous research has suggested that exposure to stress during development causes differences in social behaviour later in life. In captivity, juvenile zebra finches exposed to elevated corticosterone levels were less socially choosy and more central in their social networks when compared to untreated siblings. These differences extended to other aspects of social life, with ‘stress-exposed’ juveniles switching social learning strategies and juvenile males less faithfully learning their father's song. However, while this body of research suggests that the impacts of early-life stress could be profound, it remains unknown whether such effects are strong enough to be expressed under natural conditions. Here, we collected data on social associations of zebra finches in the Australian desert after experimentally manipulating brood sizes. Juveniles from enlarged broods experienced heightened sibling competition, and we predicted that they would express similar patterns of social associations to stress-treated birds in the captive study by having more, but less differentiated, relationships. We show striking support for the suggested consequences of developmental stress on social network positions, with our data from the wild replicating the same results in 9 out of 10 predictions previously tested in captivity. Chicks raised in enlarged broods foraged with greater numbers of conspecifics but were less ‘choosy’ and more central in the social network. Our results confirm that the natural range of variation in early-life experience can be sufficient to predict individuals' social trajectories and support theory highlighting the potential importance of developmental conditions on behaviour
    • 

    corecore