213 research outputs found

    Social information use shapes the coevolution of sociality and virulence

    Get PDF

    Using optimal foraging theory to infer how groups make collective decisions

    Full text link
    A growing body of evidence emerging from the analysis of advanced animal tracking data shows that moving groups make shared decisions about where to go, with each group member influencing the outcome. How groups coordinate departure decisions (when to go), however, remains poorly understood. Classic models from optimal foraging theory, specifically the marginal value theorem (MVT), are well-established tools that can generate quantitative predictions about when individuals should prefer to leave a food patch, given patch quality and the distribution of patches in the environment. Integrating optimal foraging theory into studies of animal collectives provides rich opportunities for gaining new insights from both empirical and theoretical studies. Specifically, the MVT can be used to make predictions about conflict of interests among group members, how consensus costs vary under different models of collective decision-making, and under what environmental conditions shared decision-making may be favored or disfavored

    Group-level differences in social network structure remain repeatable after accounting for environmental drivers

    Full text link
    Individuals show consistent between-individual behavioural variation when they interact with conspecifics or heterospecifics. Such patterns might underlie emergent group-specific behavioural patterns and between-group behavioural differences. However, little is known about (i) how social and non-social drivers (external drivers) shape group-level social structures and (ii) whether animal groups show consistent between-group differences in social structure after accounting for external drivers. We used automated tracking to quantify daily social interactions and association networks in 12 colonies of zebra finches (Taeniopygia guttata). We quantified the effects of five external drivers (group size, group composition, ecological factors, physical environments and methodological differences) on daily interaction and association networks and tested whether colonies expressed consistent differences in day-to-day network structure after controlling for these drivers. Overall, we found that external drivers contribute significantly to network structure. However, even after accounting for the contribution of external drivers, there remained significant support for consistent between-group differences in both interaction (repeatability R: up to 0.493) and association (repeatability R : up to 0.736) network structures. Our study demonstrates how group-level differences in social behaviour can be partitioned into different drivers of variation, with consistent contributions from both social and non-social factors

    Early-life social environment predicts social network position in wild zebra finches

    Get PDF
    Early-life experience can fundamentally shape individual life-history trajectories. Previous research has suggested that exposure to stress during development causes differences in social behaviour later in life. In captivity, juvenile zebra finches exposed to elevated corticosterone levels were less socially choosy and more central in their social networks when compared to untreated siblings. These differences extended to other aspects of social life, with ‘stress-exposed’ juveniles switching social learning strategies and juvenile males less faithfully learning their father's song. However, while this body of research suggests that the impacts of early-life stress could be profound, it remains unknown whether such effects are strong enough to be expressed under natural conditions. Here, we collected data on social associations of zebra finches in the Australian desert after experimentally manipulating brood sizes. Juveniles from enlarged broods experienced heightened sibling competition, and we predicted that they would express similar patterns of social associations to stress-treated birds in the captive study by having more, but less differentiated, relationships. We show striking support for the suggested consequences of developmental stress on social network positions, with our data from the wild replicating the same results in 9 out of 10 predictions previously tested in captivity. Chicks raised in enlarged broods foraged with greater numbers of conspecifics but were less ‘choosy’ and more central in the social network. Our results confirm that the natural range of variation in early-life experience can be sufficient to predict individuals' social trajectories and support theory highlighting the potential importance of developmental conditions on behaviour

    Exploratory behavior is linked to stress physiology and social network centrality in free-living house finches (Haemorhous mexicanus)

    Get PDF
    Animal personality has been linked to individual variation in both stress physiology and social behaviors, but few studies have simultaneously examined covariation between personality traits, stress hormone levels, and behaviors in free-living animals. We investigated relationships between exploratory behavior (one aspect of animal personality), stress physiology, and social and foraging behaviors in wild house finches (Haemorhous mexicanus). We conducted novel environment assays after collecting samples of baseline and stress-induced plasma corticosterone concentrations from a subset of house finches. We then fitted individuals with Passive Integrated Transponder tags and monitored feeder use and social interactions at radio-frequency identification equipped bird feeders. First, we found that individuals with higher baseline corticosterone concentrations exhibit more exploratory behaviors in a novel environment. Second, more exploratory individuals interacted with more unique conspecifics in the wild, though this result was stronger for female than for male house finches. Third, individuals that were quick to begin exploring interacted more frequently with conspecifics than slow-exploring individuals. Finally, exploratory behaviors were unrelated to foraging behaviors, including the amount of time spent on bird feeders, a behavior previously shown to be predictive of acquiring a bacterial disease that causes annual epidemics in house finches. Overall, our results indicate that individual differences in exploratory behavior are linked to variation in both stress physiology and social network traits in free-living house finches. Such covariation has important implications for house finch ecology, as both traits can contribute to fitness in the wild

    A guide to sampling design for GPS‐based studies of animal societies

    Full text link
    GPS-based tracking is widely used for studying wild social animals. Much like traditional observational methods, using GPS devices requires making a number of decisions about sampling that can affect the robustness of a study's conclusions. For example, sampling fewer individuals per group across more distinct social groups may not be sufficient to infer group- or subgroup-level behaviours, while sampling more individuals per group across fewer groups limits the ability to draw conclusions about populations. Here, we provide quantitative recommendations when designing GPS-based tracking studies of animal societies. We focus on the trade-offs between three fundamental axes of sampling effort: (1) sampling coverage—the number and allocation of GPS devices among individuals in one or more social groups; (2) sampling duration—the total amount of time over which devices collect data and (3) sampling frequency—the temporal resolution at which GPS devices record data. We first test GPS tags under field conditions to quantify how these aspects of sampling design can affect both GPS accuracy (error in absolute positional estimates) and GPS precision (error in the estimate relative position of two individuals), demonstrating that GPS error can have profound effects when inferring distances between individuals. We then use data from whole-group tracked vulturine guineafowl Acryllium vulturinum to demonstrate how the trade-off between sampling frequency and sampling duration can impact inferences of social interactions and to quantify how sampling coverage can affect common measures of social behaviour in animal groups, identifying which types of measures are more or less robust to lower coverage of individuals. Finally, we use data-informed simulations to extend insights across groups of different sizes and cohesiveness. Based on our results, we are able to offer a range of recommendations on GPS sampling strategies to address research questions across social organizational scales and social systems—from group movement to social network structure and collective decision-making. Our study provides practical advice for empiricists to navigate their decision-making processes when designing GPS-based field studies of animal social behaviours, and highlights the importance of identifying the optimal deployment decisions for drawing informative and robust conclusions
    • 

    corecore