7 research outputs found

    Variational inference for latent variables and uncertain inputs in Gaussian processes

    Get PDF
    The Gaussian process latent variable model (GP-LVM) provides a flexible approach for non-linear dimensionality reduction that has been widely applied. However, the current approach for training GP-LVMs is based on maximum likelihood, where the latent projection variables are maximised over rather than integrated out. In this paper we present a Bayesian method for training GP-LVMs by introducing a non-standard variational inference framework that allows to approximately integrate out the latent variables and subsequently train a GP-LVM by maximising an analytic lower bound on the exact marginal likelihood. We apply this method for learning a GP-LVM from i.i.d. observations and for learning non-linear dynamical systems where the observations are temporally correlated. We show that a benefit of the variational Bayesian procedure is its robustness to overfitting and its ability to automatically select the dimensionality of the non-linear latent space. The resulting framework is generic, flexible and easy to extend for other purposes, such as Gaussian process regression with uncertain or partially missing inputs. We demonstrate our method on synthetic data and standard machine learning benchmarks, as well as challenging real world datasets, including high resolution video data.This research was partially funded by the European research project EU FP7-ICT (Project Ref 612139 \WYSIWYD"), the Greek State Scholarships Foundation (IKY) and the University of She eld Moody endowment fund. We also thank Colin Litster and \Fit Fur Life" for allowing us to use their video les as datasets

    Bayesian Optimisation for Safe Navigation under Localisation Uncertainty

    Full text link
    In outdoor environments, mobile robots are required to navigate through terrain with varying characteristics, some of which might significantly affect the integrity of the platform. Ideally, the robot should be able to identify areas that are safe for navigation based on its own percepts about the environment while avoiding damage to itself. Bayesian optimisation (BO) has been successfully applied to the task of learning a model of terrain traversability while guiding the robot through more traversable areas. An issue, however, is that localisation uncertainty can end up guiding the robot to unsafe areas and distort the model being learnt. In this paper, we address this problem and present a novel method that allows BO to consider localisation uncertainty by applying a Gaussian process model for uncertain inputs as a prior. We evaluate the proposed method in simulation and in experiments with a real robot navigating over rough terrain and compare it against standard BO methods.Comment: To appear in the proceedings of the 18th International Symposium on Robotics Research (ISRR 2017
    corecore