1,610 research outputs found

    A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b

    Get PDF
    The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently one of the most widely used instruments for observing exoplanetary atmospheres, especially with the use of the spatial scanning technique. An increasing number of exoplanets have been studied using this technique as it enables the observation of bright targets without saturating the sensitive detectors. In this work we present a new pipeline for analyzing the data obtained with the spatial scanning technique, starting from the raw data provided by the instrument. In addition to commonly used correction techniques, we take into account the geometric distortions of the instrument, whose impact may become important when combined to the scanning process. Our approach can improve the photometric precision for existing data and also push further the limits of the spatial scanning technique, as it allows the analysis of even longer spatial scans. As an application of our method and pipeline, we present the results from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We calculate the transit depth per wavelength channel with an average relative uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully Bayesian spectral retrieval code, which confirms the presence of water vapor and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits our ability to disentangle the degeneracies between the fitted atmospheric parameters. Additional data over a broader spectral range are needed to address this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap

    A Principal Component Analysis-based method to analyse high-resolution spectroscopic data

    Get PDF
    High-Resolution Spectroscopy (HRS) has been used to study the composition and dynamics of exoplanetary atmospheres. In particular, the spectrometer CRIRES installed on the ESO-VLT has been used to record high-resolution spectra in the Near-IR of gaseous exoplanets. Here we present a new automatic pipeline to analyze CRIRES data-sets. Said pipeline is based on a novel use of Principal Component Analysis (PCA) and Cross-Correlation Function (CCF). The exoplanetary atmosphere is modeled with the Ï„\tau-REx code using opacities at high temperature from the ExoMol project. In this work, we tested our analysis tools on the detection of CO and H2_2O in the atmospheres of the hot-Jupiters HD209458b and HD189733b. The results of our pipeline are in agreement with previous results in the literature and other techniques.Comment: 14 pages, 12 figures, 2 tables, published in Ap

    Quantum Topological Invariants, Gravitational Instantons and the Topological Embedding

    Get PDF
    Certain topological invariants of the moduli space of gravitational instantons are defined and studied. Several amplitudes of two and four dimensional topological gravity are computed. A notion of puncture in four dimensions, that is particularly meaningful in the class of Weyl instantons, is introduced. The topological embedding, a theoretical framework for constructing physical amplitudes that are well-defined order by order in perturbation theory around instantons, is explicitly applied to the computation of the correlation functions of Dirac fermions in a punctured gravitational background, as well as to the most general QED and QCD amplitude. Various alternatives are worked out, discussed and compared. The quantum background affects the propagation by generating a certain effective ``quantum'' metric. The topological embedding could represent a new chapter of quantum field theory.Comment: LaTeX, 18 pages, no figur

    Gestational diabetes: An overview with attention for developing countries

    Get PDF
    AbstractGestational diabetes mellitus (GDM) is defined as a glucose intolerance that occurs for the first time or it is first identified during pregnancy. The GDM etiology is multifactorial. It has not completely been established yet and several known risk factors may contribute to its onset. To date, there are no shared guidelines on the management and follow-up, especially regarding the low-income countries. In this paper, we describe the state of art about epidemiology, physiopathology, diagnosis, and management of GDM. Moreover, we focus on the current state in low income countries trying to outline basis for further research

    Near-IR Transmission Spectrum of HAT-P-32b using HST/WFC3

    Get PDF
    We report here the analysis of the near-infrared transit spectrum of the hot Jupiter HAT-P-32b, which was recorded with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. HAT-P-32b is one of the most inflated exoplanets discovered, making it an excellent candidate for transit spectroscopic measurements. To obtain the transit spectrum, we have adopted different analysis methods, both parametric and non-parametric (Independent Component Analysis, ICA), and compared the results. The final spectra are all consistent within 0.5σ. The uncertainties obtained with ICA are larger than those obtained with the parametric method by a factor of ∼1.6–1.8. This difference is the tradeoff for higher objectivity due to the lack of any assumption about the instrument systematics compared to the parametric approach. The ICA error bars are therefore worst-case estimates. To interpret the spectrum of HAT-P-32b we used -REx, our fully Bayesian spectral retrieval code. As for other hot Jupiters, the results are consistent with the presence of water vapor (log H O 3.45 2 1.65 1.83 = - - + ), clouds (top pressure between 5.16 and 1.73 bar). Spectroscopic data over a broader wavelength range are needed to de-correlate the mixing ratio of water vapor from clouds and identify other possible molecular species in the atmosphere of HAT-P-32b

    Detection of an atmosphere around the super-Earth 55 Cancri e

    Get PDF
    We report the analysis of two new spectroscopic observations of the super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera onboard the HST. 55 Cancri e orbits so close to its parent star, that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6σ\sigma confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 μ\mum. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.Comment: 10 pages, 10 figures, 4 tables, Accepted for publication in Ap

    A population study of gaseous exoplanets

    Get PDF
    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 RJupR_\mathrm{Jup}. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case-studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres around 16 planets out of the 30 analysed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ\sigma confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.Comment: 14 pages, 12 figures, 3 tables, published in A

    More on the Subtraction Algorithm

    Full text link
    We go on in the program of investigating the removal of divergences of a generical quantum gauge field theory, in the context of the Batalin-Vilkovisky formalism. We extend to open gauge-algebrae a recently formulated algorithm, based on redefinitions δλ\delta\lambda of the parameters λ\lambda of the classical Lagrangian and canonical transformations, by generalizing a well- known conjecture on the form of the divergent terms. We also show that it is possible to reach a complete control on the effects of the subtraction algorithm on the space Mgf{\cal M}_{gf} of the gauge-fixing parameters. A principal fiber bundle E→Mgf{\cal E}\rightarrow {\cal M}_{gf} with a connection ω1\omega_1 is defined, such that the canonical transformations are gauge transformations for ω1\omega_1. This provides an intuitive geometrical description of the fact the on shell physical amplitudes cannot depend on Mgf{\cal M}_{gf}. A geometrical description of the effect of the subtraction algorithm on the space Mph{\cal M}_{ph} of the physical parameters λ\lambda is also proposed. At the end, the full subtraction algorithm can be described as a series of diffeomorphisms on Mph{\cal M}_{ph}, orthogonal to Mgf{\cal M}_{gf} (under which the action transforms as a scalar), and gauge transformations on E{\cal E}. In this geometrical context, a suitable concept of predictivity is formulated. We give some examples of (unphysical) toy models that satisfy this requirement, though being neither power counting renormalizable, nor finite.Comment: LaTeX file, 37 pages, preprint SISSA/ISAS 90/94/E

    Covariant Pauli-Villars Regularization of Quantum Gravity at the One Loop Order

    Full text link
    We study a regularization of the Pauli-Villars kind of the one loop gravitational divergences in any dimension. The Pauli-Villars fields are massive particles coupled to gravity in a covariant and nonminimal way, namely one real tensor and one complex vector. The gauge is fixed by means of the unusual gauge-fixing that gives the same effective action as in the context of the background field method. Indeed, with the background field method it is simple to see that the regularization effectively works. On the other hand, we show that in the usual formalism (non background) the regularization cannot work with each gauge-fixing.In particular, it does not work with the usual one. Moreover, we show that, under a suitable choice of the Pauli-Villars coefficients, the terms divergent in the Pauli-Villars masses can be corrected by the Pauli-Villars fields themselves. In dimension four, there is no need to add counterterms quadratic in the curvature tensor to the Einstein action (which would be equivalent to the introduction of new coupling constants). The technique also works when matter is coupled to gravity. We discuss the possible consequences of this approach, in particular the renormalization of Newton's coupling constant and the appearance of two parameters in the effective action, that seem to have physical implications.Comment: 26 pages, LaTeX, SISSA/ISAS 73/93/E

    Deformed dimensional regularization for odd (and even) dimensional theories

    Full text link
    I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments, IJMP
    • …
    corecore