62 research outputs found

    Sustainable development for underground mining of strategic industrial minerals: The geological and geotechnical modelling as a key factor: The case of the "marmorino" mineral deposit (Sacile - NE Italy)

    Get PDF
    The growing industrial minerals demand, in the perspective of a sustainable development of mining activities, implies a strong orientation to underground operations in the near future. In complex geological areas, for the definition of a reliable 3D ore body model a methodological approach, aimed to improve geological and geotechnical model reliability allows a confident mineral deposit evaluation and a reliable mine design, or, in other terms, costs reduction, safety increase and mining project sustainability. The described method finds its maximum application in complex geological and structural contexts, such as the Valmadonna Pedemonte “Marmorino” quarry

    Hyperimmune anti-HBs plasma as alternative to commercial immunoglobulins for prevention of HBV recurrence after liver transplantation

    Get PDF
    BACKGROUND: Hepatitis B immune globulins (HBIG) in combination with nucleos(t)ide analogues (NA) are effectively used for the prevention of hepatitis B virus (HBV) recurrence after liver transplantation (LT). However, associated treatment costs for HBIG are exceedingly high. METHODS: Fresh frozen plasma obtained from blood donors with high anti-HBs levels (hyperimmune plasma, HIP) containing at least 4,500 IU anti-HBs was used as alternative treatment for HBV recurrence prophylaxis post-LT. RESULTS: Twenty-one HBV-related LT recipients received HIP starting at transplantation, followed by long-term combination treatment with NA. Mean follow-up time was 4.5 years (range 0.5-12.6) and each patient received on average 8.2 HIP per year (range 5.8-11.4). Anti-HBs terminal elimination kinetic after HIP administration was 20.6 days (range 13.8-30.9), which is comparable to values reported for commercial HBIG products. All 21 patients remained free of HBV recurrence during follow-up and no transfusion-transmitted infection or other serious complication was observed. Seven patients developed reversible mild transfusion reactions. The cost for one HIP unit was USD 140; average yearly HBIG treatment cost was USD 1,148 per patient, as compared to USD 25,000-100,000 for treatment with commercial HBIG. CONCLUSION: The results of this study suggest that the use of HIP may be a useful and economical approach for the prevention of HBV recurrence post-LT if used in combination with NA. Additional prospective controlled studies in larger populations are needed to confirm these results

    Transfusion-transmitted infections

    Get PDF
    Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens

    Sustainable development for underground mining of strategic industrial minerals: the geological and geotechnical modelling as a key factor. The case of the “Marmorino” mineral deposit (Sacile - NE Italy)

    No full text
    Abstract The growing industrial minerals demand, in the perspective of a sustainable development of mining activities, implies a strong orientation to underground operations in the near future. In complex geological areas, for the definition of a reliable 3D ore body model a methodological approach, aimed to improve geological and geotechnical model reliability allows a confident mineral deposit evaluation and a reliable mine design, or, in other terms, costs reduction, safety increase and mining project sustainability. The described method finds its maximum application in complex geological and structural contexts, such as the Valmadonna-Pedemonte “Marmorino” quarry.</jats:p

    Liver Regeneration and Immunity: A Tale to Tell

    No full text
    The physiological importance of the liver is demonstrated by its unique and essential ability to regenerate following extensive injuries affecting its function. By regenerating, the liver reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review is to add new findings that integrate the regenerative pathway to the current knowledge. An optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3, which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth. Proliferation and cell growth are events that must be balanced during the three phases of the regenerative process: initiation, proliferation and termination. Achieving the correct liver/body weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine monophosphate. The actors involved in the regenerative process are numerous and many of them are also pivotal players in both the immune and non-immune inflammatory process, that is observed in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the molecular mechanisms that are crucial in the interplay between proliferation and inflammation.</jats:p

    Interaction effects of root-zone salinity and solar irradiation on the physiology and biochemistry of Olea europea

    No full text
    Root-zone salinity stress and high solar irradiance concomitantly occurs in the Mediterranean basin, where Olea europaea is the dominating fruit-tree crop-species. Although the effect of each individual stressor on plant performance has been widely investigated, much less is known on the interaction effects of salinity stress and solar irradiance on the physiology and biochemistry of olive plants. Here we analyzed how changes in root-zone NaCl concentration and sunlight radiation affect relevant physiological and biochemical features in olive cv. Cipressino. Two-year-old plants were supplied with 0 or 125 mM NaCl and exposed to 15% (shade) or 100% sunlight (sun) over a 5-week period, starting from July 10th, 2005. Measurements were conducted of (i) gas exchange and plant growth, (ii) the concentrations of cations and chloride, (iii) the concentrations of soluble carbohydrates, violaxanthin-cycle pigments and polyphenols, and (iv) the protein oxidation and the lipid peroxidation in the leaves. Salt-induced reductions in gas exchange performance and plant growth were greater at the sun than at the shade site, mostly due to light-induced changes in leaf water relations and vapour pressure deficit (vpd), rather than in the concentration of potentially toxic ions. Light-induced increases in leaf Na + and Cl - concentrations were countered by parallel enhancements in the concentrations of K + and Ca 2+. Sun leaves had sharply greater concentrations of mannitol and xanthophylls, irrespective of root-zone salinity. The amount of "newly assimilate carbon" allocated to polyphenols, especially to flavonoids, increased in response to salinity stress and high sunlight. Remarkably, the protein oxidation was greater in shade than in sun leaves of well-watered plants, and increased more at the shade than at the sun site because of high salinity. We suggest that heat-stress (on average maximum T exceeded 33 °C for 50% of the experimental period), which acted in concert with salinity stress and sunlight irradiance in determining plant responses in our experiment, was responsible for leaf oxidative damage in plants growing under contrasting solar radiation. Indeed, sun leaves of salt-stressed plants were equipped with an extraordinary-rich arsenal of antioxidant compounds, distributed in different cell compartments, i.e., mannitol, zeaxanthin and flavonoids, which likely countered effectively the oxidative damage driven by heat-stress, a clear example of cross-tolerance
    corecore