1,084 research outputs found

    Petrous bone diagenesis: a multi-analytical approach

    Get PDF
    © 2019 Elsevier B.V. The discovery of petrous bone as an excellent repository for ancient biomolecules has been a turning point in biomolecular archaeology, especially in aDNA research, but excessive and uncontrolled sampling could result in loss of this valuable resource for future research. This study reports on the histological (optical microscopy), physical (FTIR-ATR), elemental (CHN) and biochemical (collagen and DNA analysis) preservation of 15 human petrous bones spanning from the c. 2100 BCE to 1850 CE. Through the combined application of a number of diagenetic parameters (general histological index; infrared splitting factor; carbonate/phosphate ratio; amide/phosphate ratio; col wt%; % C, % N and C/N of whole bone and collagen; % endogenous DNA), we provide new insights into petrous bone micromorphological characteristics and diagenesis, and new evidence to enhance screening practices for aDNA and collagen analysis.MJC was supported by Danish National Research Foundation (DNRF128) and KP from the Leverhulme Trust (PLP-2012-116). MEA thanks The Danish National Resarch Foundation (DNRF94), the Lundbeck Foundation, the University of Copehagen (KU2016 programme) and the Vellux Foundations (Villum Young Investigator programme). IK would like to thank Onassis Foundation (grant no. F ZL 047-1/2015-2016), Leventis Foundation and the Greek Archaeological Committee UK (GACUK)

    Unstable Modes in Three-Dimensional SU(2) Gauge Theory

    Full text link
    We investigate SU(2) gauge theory in a constant chromomagnetic field in three dimensions both in the continuum and on the lattice. Using a variational method to stabilize the unstable modes, we evaluate the vacuum energy density in the one-loop approximation. We compare our theoretical results with the outcomes of the numerical simulations.Comment: 24 pages, REVTEX 3.0, 3 Postscript figures included. (the whole postscript file (text+figures) is available on request from [email protected]

    A Remark on the Renormalization Group Equation for the Penner Model

    Full text link
    It is possible to extract values for critical couplings and gamma_string in matrix models by deriving a renormalization group equation for the variation of the of the free energy as the size N of the matrices in the theory is varied. In this paper we derive a ``renormalization group equation'' for the Penner model by direct differentiation of the partition function and show that it reproduces the correct values of the critical coupling and gamma_string and is consistent with the logarithmic corrections present for g=0,1.Comment: LaTeX, 5 pages, LPTHE-Orsay-94-5

    Stochastic Quantization of Scalar Fields in Einstein and Rindler Spacetime

    Full text link
    We consider the stochastic quantization method for scalar fields defined in a curved manifold and also in a flat space-time with event horizon. The two-point function associated to a massive self-interacting scalar field is evaluated, up to the first order level in the coupling constant, for the case of an Einstein and also a Rindler Euclidean metric, respectively. Its value for the asymptotic limit of the Markov parameter is exhibited. The divergences therein are taken care of by employing a covariant stochastic regularization

    Species Doublers as Super Multiplets in Lattice Supersymmetry: Exact Supersymmetry with Interactions for D=1 N=2

    Full text link
    We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional N=2 model with interactions has exact Lie algebraic supersymmetry on the lattice for all super charges. In coordinate representation the finite difference operator is made to satisfy Leibnitz rule by introducing a non local product, the ``star'' product, and the exact lattice supersymmetry is realized. The standard momentum conservation is replaced on the lattice by the conservation of the sine of the momentum, which plays a crucial role in the formulation. Half lattice spacing structure is essential for the one dimensional model and the lattice supersymmetry transformation can be identified as a half lattice spacing translation combined with alternating sign structure. Invariance under finite translations and locality in the continuum limit are explicitly investigated and shown to be recovered. Supersymmetric Ward identities are shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry algebra of this model suggests a close connection with Hopf algebraic exactness of the link approach formulation of lattice supersymmetry.Comment: 34 pages, 2 figure

    Confinement and the photon propagator in 3D compact QED: a lattice study in Landau gauge at zero and finite temperature

    Get PDF
    On the lattice we study the gauge boson propagator of three dimensional compact QED in Landau gauge at zero and non-zero temperature. The non-perturbative effects are taken into account by the generation of a mass, by an anomalous dimension and by the photon wave function renormalization. All these effects can be attributed to the monopoles: they are absent in the propagator of the singularity-free part of the gauge field. We assess carefully the Gribov copy problem for the propagator and the parameters emerging from the fits.Comment: 25 pages, 32 figures, RevTeX 4; version in print in Phys. Rev. D; typos and figures 5c and 7c correcte

    Extended Dualization: a method for the Bosonization of Anomalous Fermion Systems in Arbitrary Dimension

    Get PDF
    The technique of extended dualization developed in this paper is used to bosonize quantized fermion systems in arbitrary dimension DD in the low energy regime. In its original (minimal) form, dualization is restricted to models wherein it is possible to define a dynamical quantized conserved charge. We generalize the usual dualization prescription to include systems with dynamical non--conserved quantum currents. Bosonization based on this extended dualization requires the introduction of an additional rank 00 (scalar) field together with the usual antisymmetric tensor field of rank (D2)(D-2). Our generalized dualization prescription permits one to clearly distinguish the arbitrariness in the bosonization from the arbitrariness in the quantization of the system. We study the bosonization of four--fermion interactions with large mass in arbitrary dimension. First, we observe that dualization permits one to formally bosonize these models by invoking the bosonization of the free massive Dirac fermion and adding some extra model--dependent bosonic terms. Secondly, we explore the potential of extended dualization by considering the particular case of \underbar{chiral} four--fermion interactions. Here minimal dualization is inadequate for calculating the extra bosonic terms. We demonstrate the utility of extended dualization by successfully completing the bosonization of this chiral model. Finally, we consider two examples in two dimensions which illuminate the utility of using extended dualization by showing how quantization ambiguities in a fermionic theory propagate into the bosonized version. An explicit parametrization of the quantization ambiguities of the chiral current in the Chiral Schwinger model is obtained. Similarly, for the sine--Gordon interaction in the massive Thirring model the quantizationComment: Revised version including major changes in section 3, to be published in Phys. Rev.

    Stochastic Quantization of Scalar Fields in de Sitter Spacetime

    Full text link
    We consider the stochastic quantization method for scalar fields defined in a curved manifold. The two-point function associated to a massive self-interacting scalar field is evaluated, up to the first order level in the coupling constant λ\lambda, for the case of de Sitter Euclidean metric. Its value for the asymptotic limit of the Markov parameter τ\tau\to\infty is exhibited. We discuss in detail the covariant stochastic regularization to render the one-loop two-point function finite in the de Sitter Euclidean metric

    Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models

    Full text link
    We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is constructed and the approximate values of g^{*} computed from the duality equation d(g^{*})=g^{*} are shown to agree with the available numerical results. The calculation of the beta-function \beta(g) for the 2D scalar g\Phi^{4} field theory based on the strong coupling expansion is developed and the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}. The numerical values calculated for the renormalized coupling constant g_{+}^{*} are in reasonable good agreement with the best modern estimates recently obtained from the high-temperature series expansion and with those known from the perturbative four-loop renormalization-group calculations. The application of Cardy's theorem for calculating the renormalized isothermal coupling constant g_{c} of the 2D Ising model and the related universal critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge
    corecore