24 research outputs found

    Technical Report: Cooperative Multi-Target Localization With Noisy Sensors

    Full text link
    This technical report is an extended version of the paper 'Cooperative Multi-Target Localization With Noisy Sensors' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper addresses the task of searching for an unknown number of static targets within a known obstacle map using a team of mobile robots equipped with noisy, limited field-of-view sensors. Such sensors may fail to detect a subset of the visible targets or return false positive detections. These measurement sets are used to localize the targets using the Probability Hypothesis Density, or PHD, filter. Robots communicate with each other on a local peer-to-peer basis and with a server or the cloud via access points, exchanging measurements and poses to update their belief about the targets and plan future actions. The server provides a mechanism to collect and synthesize information from all robots and to share the global, albeit time-delayed, belief state to robots near access points. We design a decentralized control scheme that exploits this communication architecture and the PHD representation of the belief state. Specifically, robots move to maximize mutual information between the target set and measurements, both self-collected and those available by accessing the server, balancing local exploration with sharing knowledge across the team. Furthermore, robots coordinate their actions with other robots exploring the same local region of the environment.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Multi-Robot Active Information Gathering Using Random Finite Sets

    Get PDF
    Many tasks in the modern world involve collecting information, such as infrastructure inspection, security and surveillance, environmental monitoring, and search and rescue. All of these tasks involve searching an environment to detect, localize, and track objects of interest, such as damage to roadways, suspicious packages, plant species, or victims of a natural disaster. In any of these tasks the number of objects of interest is often not known at the onset of exploration. Teams of robots can automate these often dull, dirty, or dangerous tasks to decrease costs and improve speed and safety. This dissertation addresses the problem of automating data collection processes, so that a team of mobile sensor platforms is able to explore an environment to determine the number of objects of interest and their locations. In real-world scenarios, robots may fail to detect objects within the field of view, receive false positive measurements to clutter objects, and be unable to disambiguate true objects. This makes data association, i.e., matching individual measurements to targets, difficult. To account for this, we utilize filtering algorithms based on random finite sets to simultaneously estimate the number of objects and their locations within the environment without the need to explicitly consider data association. Using the resulting estimates they receive, robots choose actions that maximize the mutual information between the set of targets and the binary events of receiving no detections. This effectively hedges against uninformative actions and leads to a closed form equation to compute mutual information, allowing the robot team to plan over a long time horizon. The robots either communicate with a central agent, which performs the estimation and control computations, or act in a decentralized manner. Our extensive hardware and simulated experiments validate the unified estimation and control framework, using robots with a wide variety of mobility and sensing capabilities to showcase the broad applicability of the framework

    DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles

    Full text link
    This paper proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a sub-goal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move towards the goal. Through a series of 3D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized. Multimedia demonstrations are available at https://www.youtube.com/watch?v=KneELRT8GzU&list=PLouWbAcP4zIvPgaARrV223lf2eiSR-eSS.Comment: Accepted by IEEE Transactions on Robotics (T-RO), 202

    Stochastic Occupancy Grid Map Prediction in Dynamic Scenes

    Full text link
    This paper presents two variations of a novel stochastic prediction algorithm that enables mobile robots to accurately and robustly predict the future state of complex dynamic scenes. The proposed algorithm uses a variational autoencoder to predict a range of possible future states of the environment. The algorithm takes full advantage of the motion of the robot itself, the motion of dynamic objects, and the geometry of static objects in the scene to improve prediction accuracy. Three simulated and real-world datasets collected by different robot models are used to demonstrate that the proposed algorithm is able to achieve more accurate and robust prediction performance than other prediction algorithms. Furthermore, a predictive uncertainty-aware planner is proposed to demonstrate the effectiveness of the proposed predictor in simulation and real-world navigation experiments. Implementations are open source at https://github.com/TempleRAIL/SOGMP.Comment: Accepted by 7th Annual Conference on Robot Learning (CoRL), 202

    Towards Predicting Collective Performance in Multi-Robot Teams

    Full text link
    The increased deployment of multi-robot systems (MRS) in various fields has led to the need for analysis of system-level performance. However, creating consistent metrics for MRS is challenging due to the wide range of system and environmental factors, such as team size and environment size. This paper presents a new analytical framework for MRS based on dimensionless variable analysis, a mathematical technique typically used to simplify complex physical systems. This approach effectively condenses the complex parameters influencing MRS performance into a manageable set of dimensionless variables. We form dimensionless variables which encapsulate key parameters of the robot team and task. Then we use these dimensionless variables to fit a parametric model of team performance. Our model successfully identifies critical performance determinants and their interdependencies, providing insight for MRS design and optimization. The application of dimensionless variable analysis to MRS offers a promising method for MRS analysis that effectively reduces complexity, enhances comprehension of system behaviors, and informs the design and management of future MRS deployments

    Collecting Contemporary Ceramics

    Get PDF
    Exhibition and collection of Essays featuring artists that have work in the National Ceramics Collection in the National Museum of Wales in Cardiff

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    A decentralized control policy for adaptive information gathering in hazardous environments

    No full text
    This paper proposes an algorithm for driving a group of resource-constrained robots with noisy sensors to localize an unknown number of targets in an environment, while avoiding hazards at unknown positions that cause the robots to fail. The algorithm is based upon the analytic gradient of mutual information of the target locations and measurements and offers two primary improvements over previous algorithms [6], [13]. Firstly, it is decentralized. This follows from an approximation to mutual information based upon the fact that the robots' sensors and environmental hazards have a finite area of influence. Secondly, it allows targets to be localized arbitrarily precisely with limited computational resources. This is done using an adaptive cellular decomposition of the environment, so that only areas that likely contain a target are given finer resolution. The estimation is built upon finite set statistics, which provides a rigorous, probabilistic framework for multi-target tracking. The algorithm is shown to perform favorably compared to existing approximation methods in simulation.United States. Air Force Office of Scientific Research (Grant FA9550-10-1-0567)United States. Office of Naval Research (Grant N00014-07-1-0829)United States. Office of Naval Research (Grant N00014-09-1-1051)United States. Office of Naval Research (Grant N00014-09-1-1031

    Active Magnetic Anomaly Detection Using Multiple Micro Aerial Vehicles

    No full text
    Magnetic anomaly detection (MAD) is an important problem in applications ranging from geological surveillance to military reconnaissance. MAD sensors detect local disturbances in the magnetic field, which can be used to detect the existence of and to estimate the position of buried, hidden, or submerged objects, such as ore deposits or mines. These sensors may experience false positive and false negative detections and, without prior knowledge of the targets, can only determine proximity to a target. The uncertainty in the sensors, coupled with a lack of knowledge of even the existence of targets, makes the estimation and control problems challenging. We utilize a hierarchical decomposition of the environment, coupled with an estimation algorithm based on random finite sets, to determine the number of and the locations of targets in the environment. The small team of robots follow the gradient of mutual information between the estimated set of targets and the future measurements, locally maximizing the rate of information gain. We present experimental results of a team of quadrotor micro aerial vehicles discovering and localizing an unknown number of permanent magnets.United States. Office of Naval Research (Grant N00014-07-1-0829)United States. Office of Naval Research (Grant N00014-09-1-1051)United States. Office of Naval Research (Grant N00014-09-1-1031)United States. Army Research Office (Grant W911NF-13-1-0350)National Science Foundation (U.S.) (Grant IIS-1426840
    corecore