11 research outputs found

    Extracting Social Networks from Literary Fiction

    Get PDF
    We present a method for extracting social networks from literature, namely, nineteenth-century British novels and serials. We derive the networks from dialogue interactions, and thus our method depends on the ability to determine when two characters are in conversation. Our approach involves character name chunking, quoted speech attribution and conversation detection given the set of quotes. We extract features from the social networks and examine their correlation with one another, as well as with metadata such as the novel’s setting. Our results provide evidence that the majority of novels in this time period do not fit two characterizations provided by literacy scholars. Instead, our results suggest an alternative explanation for differences in social networks

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Apparent self-heating of individual upconverting nanoparticle thermometers.

    No full text
    Individual luminescent nanoparticles enable thermometry with sub-diffraction limited spatial resolution, but potential self-heating effects from high single-particle excitation intensities remain largely uninvestigated because thermal models predict negligible self-heating. Here, we report that the common "ratiometric" thermometry signal of individual NaYF4:Yb3+,Er3+ nanoparticles unexpectedly increases with excitation intensity, implying a temperature rise over 50 K if interpreted as thermal. Luminescence lifetime thermometry, which we demonstrate for the first time using individual NaYF4:Yb3+,Er3+ nanoparticles, indicates a similar temperature rise. To resolve this apparent contradiction between model and experiment, we systematically vary the nanoparticle's thermal environment: the substrate thermal conductivity, nanoparticle-substrate contact resistance, and nanoparticle size. The apparent self-heating remains unchanged, demonstrating that this effect is an artifact, not a real temperature rise. Using rate equation modeling, we show that this artifact results from increased radiative and non-radiative relaxation from higher-lying Er3+ energy levels. This study has important implications for single-particle thermometry
    corecore