167 research outputs found

    Asymptotic behaviour of the probability density in one dimension

    Full text link
    We demonstrate that the probability density of a quantum state moving freely in one dimension may decay faster than 1/t. Inverse quadratic and cubic dependences are illustrated with analytically solvable examples. Decays faster than 1/t allow the existence of dwell times and delay times.Comment: 5 pages, one eps figure include

    Atomic time-of-arrival measurements with a laser of finite beam width

    Full text link
    A natural approach to measure the time of arrival of an atom at a spatial region is to illuminate this region with a laser and detect the first fluorescence photons produced by the excitation of the atom and subsequent decay. We investigate the actual physical content of such a measurement in terms of atomic dynamical variables, taking into account the finite width of the laser beam. Different operation regimes are identified, in particular the ones in which the quantum current density may be obtained.Comment: 7 figure

    Quantum optical time-of-arrival model in three dimensions

    Full text link
    We investigate the three-dimensional formulation of a recently proposed operational arrival-time model. It is shown that within typical conditions for optical transitions the results of the simple one-dimensional version are generally valid. Differences that may occur are consequences of Doppler and momentum-transfer effects. Ways to minimize these are discussed.Comment: 14 pages, 5 figure

    Tailoring AA6063 for improving antibacterial properties

    Get PDF
    Aluminium alloy 6063 was subjected to two different surface treatments: anodizing in sulphuric acid (SA) and the deposition of cerium conversion coatings (CeCC), in order to evaluate the antibacterial properties of the new surfaces. The microstructure and composition of the anodized samples and the cerium conversion coatings were characterized by scanning electron microscopy, energy dispersive spectrometry (SEM/EDS) and X-ray Photoemission Spectroscopy (XPS). Roughness and wettability were measured for all new surfaces. Bacterial adherence studies were carried out using Pseudomonas aeruginosa, with promising results for the anodized sample

    Bohmian transmission and reflection dwell times without trajectory sampling

    Full text link
    Within the framework of Bohmian mechanics dwell times find a straightforward formulation. The computation of associated probabilities and distributions however needs the explicit knowledge of a relevant sample of trajectories and therefore implies formidable numerical effort. Here a trajectory free formulation for the average transmission and reflection dwell times within static spatial intervals [a,b] is given for one-dimensional scattering problems. This formulation reduces the computation time to less than 5% of the computation time by means of trajectory sampling.Comment: 14 pages, 7 figures; v2: published version, significantly revised and shortened (former sections 2 and 3 omitted, appendix A added, simplified mathematics

    Optimal atomic detection by control of detuning and spatial dependence of laser intensity

    Full text link
    Atomic detection by fluorescence may fail because of reflection from the laser or transmission without excitation. The detection probability for a given velocity range may be improved by controlling the detuning and the spatial dependence of the laser intensity. A simple optimization method is discussed and exemplified

    Ultra-fast propagation of Schr\"odinger waves in absorbing media

    Full text link
    We identify the characteristic times of the evolution of a quantum wave generated by a point source with a sharp onset in an absorbing medium. The "traversal'' or "B\"uttiker-Landauer'' time (which grows linearly with the distance to the source) for the Hermitian, non-absorbing case is substituted by three different characteristic quantities. One of them describes the arrival of a maximum of the density calculated with respect to position, but the maximum with respect to time for a given position becomes independent of the distance to the source and is given by the particle's ``survival time'' in the medium. This later effect, unlike the Hartman effect, occurs for injection frequencies under or above the cut-off, and for arbitrarily large distances. A possible physical realization is proposed by illuminating a two-level atom with a detuned laser

    Improvement by laser quenching of an "atom diode": a one-way barrier for ultra-cold atoms

    Full text link
    Different laser devices working as ``atom diodes'' or ``one-way barriers'' for ultra-cold atoms have been proposed recently. They transmit ground state level atoms coming from one side, say from the left, but reflect them when they come from the other side. We combine a previous model, consisting of the stimulated Raman adiabatic passage (STIRAP) from the ground to an excited state and a state-selective mirror potential, with a localized quenching laser which produces spontaneous decay back to the ground state. This avoids backwards motion, provides more control of the decay process and therefore a more compact and useful device.Comment: 6 page
    corecore