189 research outputs found

    Nucleation in alloys

    Get PDF

    Annealing of defects in Fe after MeV Heavy ion irradiation

    Full text link
    We report study of recovery dynamics, followed by in-situ resistivity measurement after 100 MeV oxygen ion irradiation, in cold rolled Fe at 300K. Scaling behavior with microstructural density and temperature of sample have been used to establish stress induced defects formed during irradiation as a new type of sink. The dynamics after irradiation has been shown to be due to migration of defects to two types of sinks i.e. stress induced defect as variable sinks and internal surfaces as fixed sinks. Experimental data obtained under various experimental conditions have been fitted to theoretical curves. Parameters thus obtained from fitting are employed to establish effect of electronic energy loss and temperature on recovery dynamics and stress associated with variable sinks.Comment: 12 pages, 7 figures. Europhysics Letter (in press

    Thermal annealing study of swift heavy-ion irradiated zirconia

    Get PDF
    Sintered samples of monoclinic zirconia (alpha-ZrO2) have been irradiated at room temperature with 6.0-GeV Pb ions in the electronic slowing down regime. X-ray diffraction (XRD) and micro-Raman spectroscopy measurements showed unambiguously that a transition to the 'metastable' tetragonal phase (beta-ZrO2) occurred at a fluence of 6.5x10^12 cm-2 for a large electronic stopping power value (approx 32.5 MeV ÎĽ\mum-1). At a lower fluence of 1.0x10^12 cm-2, no such phase transformation was detected. The back-transformation from beta- to alpha-ZrO2 induced by isothermal or isochronal thermal annealing was followed by XRD analysis. The back-transformation started at an onset temperature around 500 K and was completed by 973 K. Plots of the residual tetragonal phase fraction deduced from XRD measurements versus annealing temperature or time are analyzed with first- or second-order kinetic models. An activation energy close to 1 eV for the back-transformation process is derived either from isothermal annealing curves, using the so-called "cross-cut" method, or from the isochronal annealing curve, using a second-order kinetic law. Correlation with the thermal recovery of ion-induced paramagnetic centers monitored by EPR spectroscopy is discussed. Effects of crystallite size evolution and oxygen migration upon annealing are also addressed

    Thermal recovery of colour centres induced in cubic yttria-stabilized zirconia by charged particle irradiations

    Get PDF
    We have used electron paramagnetic resonance to study the thermal annealing of colour centres induced in cubic yttria-stabilized zirconia by swift electron and heavy ion-irradiations. Single crystals were irradiated with 1 or 2-MeV electrons, and 200-MeV 127I, or 200-MeV 197Au ions. Electron and ion beams produce the same colour centres: namely i) an F+-like centre, ii) the so-called T-centre (Zr3+ in a trigonal oxygen local environment), and iii) a hole center. Isochronal annealing was performed up to 973 K. Isothermal annealing was performed at various temperatures on samples irradiated with 2-MeV electrons. The stability of paramagnetic centres increases with fluence and with a TCR treatment at 1373 K under vacuum prior to the irradiations. Two distinct recovery processes are observed depending on fluence and/or thermal treatment. The single-stage type I process occurs for F+-like centres at low fluences in as-received samples, and is probably linked to electron-hole recombination. T-centres are also annealed according to a single-stage process regardless of fluence. The annealing curves allow one to obtain activation energies for recovery. The two-stage type II process is observed only for the F+-like centres in as-received samples, at higher fluences, or in reduced samples. These centres are first annealed in a first stage below 550 K, like in type I, then transform into new paramagnetic centres in a second stage above 550 K. A simple kinetics model is proposed for this process. Complete colour centre bleaching is achieved at about 1000 K

    Superconducting and Normal State Properties of Neutron Irradiated MgB2

    Full text link
    We have performed a systematic study of the evolution of the superconducting and normal state properties of neutron irradiated MgB2_2 wire segments as a function of fluence and post exposure annealing temperature and time. All fluences used suppressed the transition temperature, Tc, below 5 K and expanded the unit cell. For each annealing temperature Tc recovers with annealing time and the upper critical field, Hc2(T=0), approximately scales with Tc. By judicious choice of fluence, annealing temperature and time, the Tc of damaged MgB2 can be tuned to virtually any value between 5 and 39 K. For higher annealing temperatures and longer annealing times the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters.Comment: Updated version, to appear in Phys. Rev.

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    International consensus statement on allergy and rhinology: Allergic rhinitis – 2023

    Get PDF
    Background In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. Methods ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. Results ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. Conclusion The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment

    Basic principles of postgrowth annealing of CdTe:Cl ingot to obtain semi-insulating crystals

    Full text link
    The process of annealing of a CdTe:Cl ingot during its cooling after growth was studied. The annealing was performed in two stages: a high-temperature stage, with an approximate equality of chlorine and cadmium vacancy concentrations established at the thermodynamic equilibrium between the crystal and vapors of volatile components, and a low-temperature stage, with charged defects interacting to form neutral associations. The chlorine concentrations necessary to obtain semi-insulating crystals were determined for various ingot cooling rates in the high temperature stage. The dependence of the chlorine concentration [Cl+Te] in the ingot on the temperature of annealing in the high-temperature stage was found. The carrier lifetimes and drift mobilities were obtained in relation to the temperature and cadmium vapor pressure in the postgrowth annealing of the ingot.Comment: 6 pages, 6 figure

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    Chemical Beam Epitaxy of Compound Semiconductors

    Get PDF
    Contains reports on three research projects and a list of publications.3M Company Faculty Development GrantAT&T Research Foundation Special Purpose GrantCharles S. Draper Laboratories Contract DL-H-418484Defense Advanced Research Projects Agency Subcontract 216-25013Defense Advanced Research Projects Agency Subcontract 542383Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant ECS 88-46919National Science Foundation Grant ECS 89-05909Defense Advanced Research Projects Agency Subcontract 5300716-07U.S. Navy - Office of Naval Research Contract N00014-88-K-0564Defense Advanced Research Projects Agency Subcontract 530-0716-07National Science Foundation Subcontract DMR 90-0789
    • …
    corecore