5 research outputs found

    Effective treatment of edema and endothelial barrier dysfunction with imatinib

    Get PDF
    Background-Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation. Methods and Results-We evaluated the effect of imatinib on endothelial barrier function in vitro and in vivo. In human macro- and microvascular endothelial monolayers, imatinib attenuated endothelial barrier dysfunction induced by thrombin and histamine. Small interfering RNA knock-downs of the imatinib-sensitive kinases revealed that imatinib attenuates endothelial barrier dysfunction via inhibition of Abl-related gene kinase (Arg/Abl2), a previously unknown mediator of endothelial barrier dysf Conclusions-Thus, imatinib prevents endothelial barrier dysfunction and edema formation via inhibition of Arg. These findings identify imatinib as a promising approach to permeability edema and indicate Arg as novel target for edema treatment. (Circulation. 2012;126:2728-2738.

    The MEF2 transcriptional target DMPK induces loss of sarcomere structure and cardiomyopathy

    Get PDF
    Aims The pathology of heart failure is characterized by poorly contracting and dilated ventricles. At the cellular level, this is associated with lengthening of individual cardiomyocytes and loss of sarcomeres. While it is known that the transcription factor myocyte enhancer factor-2 (MEF2) is involved in this cardiomyocyte remodelling, the underlying mechanism remains to be elucidated. Here, we aim to mechanistically link MEF2 target genes with loss of sarcomeres during cardiomyocyte remodelling. Methods Neonatal rat cardiomyocytes overexpressing MEF2 elongated and lost their sarcomeric structure. We identified and results myotonic dystrophy protein kinase (DMPK) as direct MEF2 target gene involved in this process. Adenoviral overexpression of DMPK E, the isoform upregulated in heart failure, resulted in severe loss of sarcomeres in vitro, and transgenic mice overexpressing DMPK E displayed disruption of sarcomere structure and cardiomyopathy in vivo. Moreover, we found a decreased expression of sarcomeric genes following DMPK E gain-of-function. These genes are targets of the transcription factor serum response factor (SRF) and we found that DMPK E acts as inhibitor of SRF transcriptional activity. Conclusion Our data indicate that MEF2-induced loss of sarcomeres is mediated by DMPK via a decrease in sarcomeric gene expression by interfering with SRF transcriptional activity. Together, these results demonstrate an unexpected role for DMPK as a direct mediator of adverse cardiomyocyte remodelling and heart failure

    The RNA-binding protein Rbm38 is dispensable during pressure overload-induced cardiac remodeling in mice

    Get PDF
    The importance of tightly controlled alternative pre-mRNA splicing in the heart is emerging. The RNA binding protein Rbm24 has recently been identified as a pivotal cardiac splice factor, which governs sarcomerogenesis in the heart by controlling the expression of alternative protein isoforms. Rbm38, a homolog of Rbm24, has also been implicated in RNA processes such as RNA splicing, RNA stability and RNA translation, but its function in the heart is currently unknown. Here, we investigated the role of Rbm38 in the healthy and diseased adult mouse heart. In contrast to the heart- and skeletal muscle-enriched protein Rbm24, Rbm38 appears to be more broadly expressed. We generated somatic Rbm38 -/- mice and show that global loss of Rbm38 results in hematopoietic defects. Specifically, Rbm38 -/- mice were anemic and displayed enlarged spleens with extramedullary hematopoiesis, as has been shown earlier. The hearts of Rbm38 -/- mice were mildly hypertrophic, but cardiac function was not affected. Furthermore, Rbm38 deficiency did not affect cardiac remodeling (i.e. hypertrophy, LV dilation and fibrosis) or performance (i.e. fractional shortening) after pressure-overload induced by transverse aorta constriction. To further investigate molecular consequences of Rbm38 deficiency, we examined previously identified RNA stability, splicing, and translational targets of Rbm38. We found that stability targets p21 and HuR, splicing targets Mef2d and Fgfr2, and translation target p53 were not altered, suggesting that these Rbm38 targets are tissue-specific or that Rbm38 deficiency may be counteracted by a redundancy mechanism. In this regard, we found a trend towards increased Rbm24 protein expression in Rbm38 -/- hearts. Overall, we conclude that Rbm38 is critical in hematopoiesis, but does not play a critical role in the healthy and diseased heart

    Effective Treatment of Edema and Endothelial Barrier Dysfunction With Imatinib

    No full text
    Background-Tissue edema and endothelial barrier dysfunction as observed in sepsis and acute lung injury carry high morbidity and mortality, but currently lack specific therapy. In a recent case report, we described fast resolution of pulmonary edema on treatment with the tyrosine kinase inhibitor imatinib through an unknown mechanism. Here, we explored the effect of imatinib on endothelial barrier dysfunction and edema formation. Methods and Results-We evaluated the effect of imatinib on endothelial barrier function in vitro and in vivo. In human macro- and microvascular endothelial monolayers, imatinib attenuated endothelial barrier dysfunction induced by thrombin and histamine. Small interfering RNA knock-downs of the imatinib-sensitive kinases revealed that imatinib attenuates endothelial barrier dysfunction via inhibition of Abl-related gene kinase (Arg/Abl2), a previously unknown mediator of endothelial barrier dysf Conclusions-Thus, imatinib prevents endothelial barrier dysfunction and edema formation via inhibition of Arg. These findings identify imatinib as a promising approach to permeability edema and indicate Arg as novel target for edema treatment. (Circulation. 2012;126:2728-2738.
    corecore