10,656 research outputs found

    Modeling low order aberrations in laser guide star adaptive optics systems

    Get PDF
    When using a laser guide star (LGS) adaptive optics (AO) system, quasi-static aberrations are observed between the measured wavefronts from the LGS wavefront sensor (WFS) and the natural guide star (NGS) WFS. These LGS aberrations, which can be as much as 1200 nm RMS on the Keck II LGS AO system, arise due to the finite height and structure of the sodium layer. The LGS aberrations vary significantly between nights due to the difference in sodium structure. In this paper, we successfully model these LGS aberrations for the Keck II LGS AO system. We use this model to characterize the LGS aberrations as a function of pupil angle, elevation, sodium structure, uplink tip/tilt error, detector field of view, the number of detector pixels, and seeing. We also employ the model to estimate the LGS aberrations for the Palomar LGS AO system, the planned Keck I and the Thirty Meter Telescope (TMT) LGS AO systems. The LGS aberrations increase with increasing telescope diameter, but are reduced by central projection of the laser compared to side projection

    Tight Noise Thresholds for Quantum Computation with Perfect Stabilizer Operations

    Full text link
    We study how much noise can be tolerated by a universal gate set before it loses its quantum-computational power. Specifically we look at circuits with perfect stabilizer operations in addition to imperfect non-stabilizer gates. We prove that for all unitary single-qubit gates there exists a tight depolarizing noise threshold that determines whether the gate enables universal quantum computation or if the gate can be simulated by a mixture of Clifford gates. This exact threshold is determined by the Clifford polytope spanned by the 24 single-qubit Clifford gates. The result is in contrast to the situation wherein non-stabilizer qubit states are used; the thresholds in that case are not currently known to be tight.Comment: 4 pages, 2 figure

    Quasi-static aberrations induced by laser guide stars in adaptive optics

    Get PDF
    Laser Guide Star Adaptive Optics (LGS AO) systems use the return from an artificial guide star to measure the wavefront aberrations in the direction of the science object. We observe quasi-static differences between the measured wavefront and the wavefront aberration of the science object. This paper quantifies and explains the source of the difference between the wavefronts measured using an LGS and a natural guide star at the W. M. Keck Observatory, which can be as high as 1000 nm RMS

    Hamiltonian Oracles

    Full text link
    Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.Comment: 16 pages, REVTeX 4 (minor corrections in v2

    Searching for magnetic monopoles trapped in accelerator material at the Large Hadron Collider

    Full text link
    If produced in high energy particle collisions at the LHC, magnetic monopoles could stop in material surrounding the interaction points. Obsolete parts of the beam pipe near the CMS interaction region, which were exposed to the products of pp and heavy ion collisions, were analysed using a SQUID-based magnetometer. The purpose of this work is to quantify the performance of the magnetometer in the context of a monopole search using a small set of samples of accelerator material ahead of the 2013 shutdown.Comment: 11 page

    Probing spacetime foam with extragalactic sources

    Get PDF
    Due to quantum fluctuations, spacetime is probably ``foamy'' on very small scales. We propose to detect this texture of spacetime foam by looking for core-halo structures in the images of distant quasars. We find that the Very Large Telescope interferometer will be on the verge of being able to probe the fabric of spacetime when it reaches its design performance. Our method also allows us to use spacetime foam physics and physics of computation to infer the existence of dark energy/matter, independent of the evidence from recent cosmological observations.Comment: LaTeX, 11 pages, 1 figure; version submitted to PRL; several references added; very useful comments and suggestions by Eric Perlman incorporate

    Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population

    Get PDF
    Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18). Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity

    Magnetic permeability of near-critical 3d abelian Higgs model and duality

    Get PDF
    The three-dimensional abelian Higgs model has been argued to be dual to a scalar field theory with a global U(1) symmetry. We show that this duality, together with the scaling and universality hypotheses, implies a scaling law for the magnetic permeablity chi_m near the line of second order phase transition: chi_m ~ t^nu, where t is the deviation from the critical line and nu ~ 0.67 is a critical exponent of the O(2) universality class. We also show that exactly on the critical lines, the dependence of magnetic induction on external magnetic field is quadratic, with a proportionality coefficient depending only on the gauge coupling. These predictions provide a way for testing the duality conjecture on the lattice in the Coulomb phase and at the phase transion.Comment: 11 pages; updated references and small changes, published versio

    Mass for the graviton

    Get PDF
    Can we give the graviton a mass? Does it even make sense to speak of a massive graviton? In this essay I shall answer these questions in the affirmative. I shall outline an alternative to Einstein Gravity that satisfies the Equivalence Principle and automatically passes all classical weak-field tests (GM/r approx 10^{-6}). It also passes medium-field tests (GM/r approx 1/5), but exhibits radically different strong-field behaviour (GM/r approx 1). Black holes in the usual sense do not exist in this theory, and large-scale cosmology is divorced from the distribution of matter. To do all this we have to sacrifice something: the theory exhibits {*prior geometry*}, and depends on a non-dynamical background metric.Comment: 12 pages, plain LaTeX. Major revisions: (1) Inconsistency in equations of motion fixed. (2) More discussion of the problems associated with quantization. (3) Many more references adde
    • …
    corecore