7,664 research outputs found

    Probing spacetime foam with extragalactic sources

    Get PDF
    Due to quantum fluctuations, spacetime is probably ``foamy'' on very small scales. We propose to detect this texture of spacetime foam by looking for core-halo structures in the images of distant quasars. We find that the Very Large Telescope interferometer will be on the verge of being able to probe the fabric of spacetime when it reaches its design performance. Our method also allows us to use spacetime foam physics and physics of computation to infer the existence of dark energy/matter, independent of the evidence from recent cosmological observations.Comment: LaTeX, 11 pages, 1 figure; version submitted to PRL; several references added; very useful comments and suggestions by Eric Perlman incorporate

    The quality of student dialogue in citizenship education

    Get PDF
    This study investigates the relationship between the quality of student dialogue and students’ ability to justify their viewpoints on a moral issue. A curriculum unit for dialogic citizenship education was developed and implemented in the 8th grade of secondary education. In the final lesson, students discussed a moral issue and then wrote an essay on it. The results show that students who made more value-related utterances during the discussion also referred more often and more explicitly in their individually written essays to moral values. This study indicates that the quality of the content of students’ dialogue is important for their ability to substantiate their opinion on moral issues with value-laden argumentation. Approaches to citizenship education in which dialogue is a central element should, therefore, pay specific attention to the validation of ideas in student dialogue

    Strong nonlocality: A trade-off between states and measurements

    Full text link
    Measurements on entangled quantum states can produce outcomes that are nonlocally correlated. But according to Tsirelson's theorem, there is a quantitative limit on quantum nonlocality. It is interesting to explore what would happen if Tsirelson's bound were violated. To this end, we consider a model that allows arbitrary nonlocal correlations, colloquially referred to as "box world". We show that while box world allows more highly entangled states than quantum theory, measurements in box world are rather limited. As a consequence there is no entanglement swapping, teleportation or dense coding.Comment: 11 pages, 2 figures, very minor change

    Noise resistance of adiabatic quantum computation using random matrix theory

    Full text link
    Besides the traditional circuit-based model of quantum computation, several quantum algorithms based on a continuous-time Hamiltonian evolution have recently been introduced, including for instance continuous-time quantum walk algorithms as well as adiabatic quantum algorithms. Unfortunately, very little is known today on the behavior of these Hamiltonian algorithms in the presence of noise. Here, we perform a fully analytical study of the resistance to noise of these algorithms using perturbation theory combined with a theoretical noise model based on random matrices drawn from the Gaussian Orthogonal Ensemble, whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure

    Role of a "Local" Cosmological Constant in Euclidean Quantum Gravity

    Get PDF
    In 4D non-perturbative Regge calculus a positive value of the effective cosmological constant characterizes the collapsed phase of the system. If a local term of the form S=hϵ{h1,h2,...}λhVhS'=\sum_{h \epsilon \{h_1,h_2,...\} } \lambda_h V_h is added to the gravitational action, where {h1,h2,...}\{h_1,h_2,...\} is a subset of the hinges and {λh}\{\lambda_h\} are positive constants, one expects that the volumes Vh1V_{h_1}, Vh2V_{h_2}, ... tend to collapse and that the excitations of the lattice propagating through the hinges {h1,h2,...}\{h_1,h_2,...\} are damped. We study the continuum analogue of this effect. The additional term SS' may represent the coupling of the gravitational field to an external Bose condensate.Comment: LaTex, 18 page

    Optimal parametrizations of adiabatic paths

    Full text link
    The parametrization of adiabatic paths is optimal when tunneling is minimized. Hamiltonian evolutions do not have unique optimizers. However, dephasing Lindblad evolutions do. The optimizers are simply characterized by an Euler-Lagrange equation and have a constant tunneling rate along the path irrespective of the gap. Application to quantum search algorithms recovers the Grover result for appropriate scaling of the dephasing. Dephasing rates that beat Grover imply hidden resources in Lindblad operators.Comment: 4 pages, 2 figures; To prevent from misunderstanding, we clarified the discussion of an apparent speedup in the Grover algorithm; figures improved + minor change

    On SIC-POVMs in Prime Dimensions

    Full text link
    The generalized Pauli group and its normalizer, the Clifford group, have a rich mathematical structure which is relevant to the problem of constructing symmetric informationally complete POVMs (SIC-POVMs). To date, almost every known SIC-POVM fiducial vector is an eigenstate of a "canonical" unitary in the Clifford group. I show that every canonical unitary in prime dimensions p > 3 lies in the same conjugacy class of the Clifford group and give a class representative for all such dimensions. It follows that if even one such SIC-POVM fiducial vector is an eigenvector of such a unitary, then all of them are (for a given such dimension). I also conjecture that in all dimensions d, the number of conjugacy classes is bounded above by 3 and depends only on d mod 9, and I support this claim with computer computations in all dimensions < 48.Comment: 6 pages, no figures. v3 Refs added, improved discussion of previous work. Ref to a proof of the main conjecture also adde

    Mg/Ti multilayers: structural, optical and hydrogen absorption properties

    Get PDF
    Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a "spinodal-like" microstructure with a small degree of chemical short-range order in the atoms distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities and characterize them both structurally and optically. Notwithstanding the large lattice parameter mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. Upon exposure to H2 gas a two-step hydrogenation process occurs, with the Ti layers forming the hydride before Mg. From in-situ measurements of the bilayer thickness L at different hydrogen pressures, we observe large out-of-plane expansions of the Mg and Ti layers upon hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. Upon unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces
    corecore