576 research outputs found

    Crossing Statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem

    Full text link
    By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties.Comment: 14 pages, 4 figures, discussions extended, 1 figure and two references added, main results unchanged, matches the final version to be published in JCA

    Model- and calibration-independent test of cosmic acceleration

    Full text link
    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established.Comment: 13 pages, 2 figures, major change

    Cosmic distance-duality as probe of exotic physics and acceleration

    Get PDF
    In cosmology, distances based on standard candles (e.g. supernovae) and standard rulers (e.g. baryon oscillations) agree as long as three conditions are met: (1) photon number is conserved, (2) gravity is described by a metric theory with (3) photons travelling on unique null geodesics. This is the content of distance-duality (the reciprocity relation) which can be violated by exotic physics. Here we analyse the implications of the latest cosmological data sets for distance-duality. While broadly in agreement and confirming acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia at z > 0.5, perhaps due to lensing magnification bias. This brightening has been interpreted as evidence for a late-time transition in the dark energy but because it is not seen in the d_A data we argue against such an interpretation. Our results do, however, rule out significant SN-Ia evolution and extinction: the "replenishing" grey-dust model with no cosmic acceleration is excluded at more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication in PR

    Observational constraint on dynamical evolution of dark energy

    Full text link
    We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of Ωm0\Omega_{m0}. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at z=0.22z=0.22, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter w(z)w(z) of dark energy. We find no significant evidence for evolving w(z)w(z). With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift isimproved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.Comment: revtex, 16 pages, 5 figures, V2: published versio

    Interacting models may be key to solve the cosmic coincidence problem

    Full text link
    It is argued that cosmological models that feature a flow of energy from dark energy to dark matter may solve the coincidence problem of late acceleration (i.e., "why the energy densities of both components are of the same order precisely today?"). However, much refined and abundant observational data of the redshift evolution of the Hubble factor are needed to ascertain whether they can do the job.Comment: 25 pages, 11 figures; accepted for publication in JCA

    Seeking Evolution of Dark Energy

    Get PDF
    We study how observationally to distinguish between a cosmological constant (CC) and an evolving dark energy with equation of state ω(Z)\omega(Z). We focus on the value of redshift Z* at which the cosmic late time acceleration begins and a¨(Z)=0\ddot{a}(Z^{*}) = 0. Four ω(Z)\omega(Z) are studied, including the well-known CPL model and a new model that has advantages when describing the entire expansion era. If dark energy is represented by a CC model with ω1\omega \equiv -1, the present ranges for ΩΛ(t0)\Omega_{\Lambda}(t_0) and Ωm(t0)\Omega_m(t_0) imply that Z* = 0.743 with 4% error. We discuss the possible implications of a model independent measurement of Z* with better accuracy.Comment: 9 pages, LaTeX, 5 figure

    Bayesian Analysis and Constraints on Kinematic Models from Union SNIa

    Full text link
    The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter (constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter (constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Λ\LambdaCDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q0q_0 and j0j_0) and for the transition redshift (ztz_t) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1σ1\sigma confidence limits imply the following ranges of values: q0[0.96,0.46]q_0\in[-0.96,-0.46], j0[3.2,0.3]j_0\in[-3.2,-0.3] and zt[0.36,0.84]z_t\in[0.36,0.84], which are compatible with the Λ\LambdaCDM predictions, q0=0.57±0.04q_0=-0.57\pm0.04, j0=1j_0=-1 and zt=0.71±0.08z_t=0.71\pm0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Λ\LambdaCDM model, and that the current observations are not powerful enough to discriminate among all of them.Comment: 13 pages. Matches published versio

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes

    Full text link
    We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia), the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray gas mass fraction in clusters and the observational H(z)H(z) data to constrain models of the accelerating universe. Combining the 192 ESSENCE data with the observational H(z)H(z) data to constrain a parameterized deceleration parameter, we obtain the best fit values of transition redshift and current deceleration parameter zT=0.6320.127+0.256z_{T}=0.632^{+0.256}_{-0.127}, q0=0.7880.182+0.182q_{0}=-0.788^{+0.182}_{-0.182}. Furthermore, using Λ\LambdaCDM model and two model-independent equation of state of dark energy, we find that the combined constraint from the 192 ESSENCE data and other four cosmological observations gives smaller values of Ω0m\Omega_{0m} and q0q_{0}, but a larger value of zTz_{T} than the combined constraint from the 182 Gold data with other four observations. Finally, according to the Akaike information criterion it is shown that the recently observed data equally supports three dark energy models: Λ\LambdaCDM, wde(z)=w0w_{de}(z)=w_{0} and wde(z)=w0+w1ln(1+z)w_{de}(z)=w_{0}+w_{1}\ln(1+z).Comment: 18 pages, 8 figure

    Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts

    Get PDF
    Reciprocal interactions between prostate cancer cells and carcinomaassociated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and cocultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to monoculture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-b superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell–fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.Yunjian Wu, Kimberley C. Clark, Birunthi Niranjan, Anderly C. Chueh, Lisa G. Horvath, Renea A. Taylor, and Roger J. Dal
    corecore