576 research outputs found
Crossing Statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem
By introducing Crossing functions and hyper-parameters I show that the
Bayesian interpretation of the Crossing Statistics [1] can be used trivially
for the purpose of model selection among cosmological models. In this approach
to falsify a cosmological model there is no need to compare it with other
models or assume any particular form of parametrization for the cosmological
quantities like luminosity distance, Hubble parameter or equation of state of
dark energy. Instead, hyper-parameters of Crossing functions perform as
discriminators between correct and wrong models. Using this approach one can
falsify any assumed cosmological model without putting priors on the underlying
actual model of the universe and its parameters, hence the issue of dark energy
parametrization is resolved. It will be also shown that the sensitivity of the
method to the intrinsic dispersion of the data is small that is another
important characteristic of the method in testing cosmological models dealing
with data with high uncertainties.Comment: 14 pages, 4 figures, discussions extended, 1 figure and two
references added, main results unchanged, matches the final version to be
published in JCA
Model- and calibration-independent test of cosmic acceleration
We present a calibration-independent test of the accelerated expansion of the
universe using supernova type Ia data. The test is also model-independent in
the sense that no assumptions about the content of the universe or about the
parameterization of the deceleration parameter are made and that it does not
assume any dynamical equations of motion. Yet, the test assumes the universe
and the distribution of supernovae to be statistically homogeneous and
isotropic. A significant reduction of systematic effects, as compared to our
previous, calibration-dependent test, is achieved. Accelerated expansion is
detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in
the 2008 Union sample) if the universe is spatially flat. This result depends,
however, crucially on supernovae with a redshift smaller than 0.1, for which
the assumption of statistical isotropy and homogeneity is less well
established.Comment: 13 pages, 2 figures, major change
Cosmic distance-duality as probe of exotic physics and acceleration
In cosmology, distances based on standard candles (e.g. supernovae) and
standard rulers (e.g. baryon oscillations) agree as long as three conditions
are met: (1) photon number is conserved, (2) gravity is described by a metric
theory with (3) photons travelling on unique null geodesics. This is the
content of distance-duality (the reciprocity relation) which can be violated by
exotic physics. Here we analyse the implications of the latest cosmological
data sets for distance-duality. While broadly in agreement and confirming
acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia
at z > 0.5, perhaps due to lensing magnification bias. This brightening has
been interpreted as evidence for a late-time transition in the dark energy but
because it is not seen in the d_A data we argue against such an interpretation.
Our results do, however, rule out significant SN-Ia evolution and extinction:
the "replenishing" grey-dust model with no cosmic acceleration is excluded at
more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby
illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication
in PR
Observational constraint on dynamical evolution of dark energy
We use the Constitution supernova, the baryon acoustic oscillation, the
cosmic microwave background, and the Hubble parameter data to analyze the
evolution property of dark energy. We obtain different results when we fit
different baryon acoustic oscillation data combined with the Constitution
supernova data to the Chevallier-Polarski-Linder model. We find that the
difference stems from the different values of . We also fit the
observational data to the model independent piecewise constant parametrization.
Four redshift bins with boundaries at , 0.53, 0.85 and 1.8 were chosen
for the piecewise constant parametrization of the equation of state parameter
of dark energy. We find no significant evidence for evolving .
With the addition of the Hubble parameter, the constraint on the equation of
state parameter at high redshift isimproved by 70%. The marginalization of the
nuisance parameter connected to the supernova distance modulus is discussed.Comment: revtex, 16 pages, 5 figures, V2: published versio
Interacting models may be key to solve the cosmic coincidence problem
It is argued that cosmological models that feature a flow of energy from dark
energy to dark matter may solve the coincidence problem of late acceleration
(i.e., "why the energy densities of both components are of the same order
precisely today?"). However, much refined and abundant observational data of
the redshift evolution of the Hubble factor are needed to ascertain whether
they can do the job.Comment: 25 pages, 11 figures; accepted for publication in JCA
Seeking Evolution of Dark Energy
We study how observationally to distinguish between a cosmological constant
(CC) and an evolving dark energy with equation of state . We focus
on the value of redshift Z* at which the cosmic late time acceleration begins
and . Four are studied, including the
well-known CPL model and a new model that has advantages when describing the
entire expansion era. If dark energy is represented by a CC model with , the present ranges for and
imply that Z* = 0.743 with 4% error. We discuss the possible implications of a
model independent measurement of Z* with better accuracy.Comment: 9 pages, LaTeX, 5 figure
Bayesian Analysis and Constraints on Kinematic Models from Union SNIa
The kinematic expansion history of the universe is investigated by using the
307 supernovae type Ia from the Union Compilation set. Three simple model
parameterizations for the deceleration parameter (constant, linear and abrupt
transition) and two different models that are explicitly parametrized by the
cosmic jerk parameter (constant and variable) are considered. Likelihood and
Bayesian analyses are employed to find best fit parameters and compare models
among themselves and with the flat CDM model. Analytical expressions
and estimates for the deceleration and cosmic jerk parameters today ( and
) and for the transition redshift () between a past phase of cosmic
deceleration to a current phase of acceleration are given. All models
characterize an accelerated expansion for the universe today and largely
indicate that it was decelerating in the past, having a transition redshift
around 0.5. The cosmic jerk is not strongly constrained by the present
supernovae data. For the most realistic kinematic models the
confidence limits imply the following ranges of values: ,
and , which are compatible with the
CDM predictions, , and .
We find that even very simple kinematic models are equally good to describe the
data compared to the concordance CDM model, and that the current
observations are not powerful enough to discriminate among all of them.Comment: 13 pages. Matches published versio
Quantum driven Bounce of the future Universe
It is demonstrated that due to back-reaction of quantum effects, expansion of
the universe stops at its maximum and takes a turnaround. Later on, it
contracts to a very small size in finite future time. This phenomenon is
followed by a " bounce" with re-birth of an exponentially expanding
non-singular universe
Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes
We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia),
the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray
gas mass fraction in clusters and the observational data to constrain
models of the accelerating universe. Combining the 192 ESSENCE data with the
observational data to constrain a parameterized deceleration parameter,
we obtain the best fit values of transition redshift and current deceleration
parameter , .
Furthermore, using CDM model and two model-independent equation of
state of dark energy, we find that the combined constraint from the 192 ESSENCE
data and other four cosmological observations gives smaller values of
and , but a larger value of than the combined
constraint from the 182 Gold data with other four observations. Finally,
according to the Akaike information criterion it is shown that the recently
observed data equally supports three dark energy models: CDM,
and .Comment: 18 pages, 8 figure
Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts
Reciprocal interactions between prostate cancer cells and carcinomaassociated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and cocultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to monoculture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-b superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell–fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.Yunjian Wu, Kimberley C. Clark, Birunthi Niranjan, Anderly C. Chueh, Lisa G. Horvath, Renea A. Taylor, and Roger J. Dal
- …