7 research outputs found

    Studies on Physico-Chemical Parameters and Biodiversity of Freshwater Algae in Kanbargi Lake of Belgaum (Karnataka) .

    No full text
    Studies on biodiversity of phytoplankton in Kanbargi Lake records a total of 14 species belonging to four classes of algae which includes, Bacillariophyceae – 6 species, Chlorophyceae – 5 species, 2 species of Euglenophyceae and 1 species of Dinophyceae. Both qualitative and quantitative analysis revealed that Bacillariophyceae species were abundant. Algal pollution index revealed a score of 18 indicating that Kanbargi Lake is less organically polluted. A study on physico-chemical parameters of Kanbargi Lake revealed that pH ranged from 7.5 to 9.8, turbidity 0.3302 to 0.7112 m, electrical conductivity 840 to 1070 μS/cm, dissolved oxygen 5.5 to 10.8 mg/L, total hardness 230 to 270 mg/L, calcium hardness 85 to120 mg/L, total alkalinity 165 to 265 mg/L, temperature 21 to 25 °C, iron 0.3 to 1.0 mg/L, residual chlorine 0.0 to 0.2 mg/L, chloride 60 to 280 mg/L, ammonium 0.0 to 0.3 mg/L, phosphate 0.0 to 0.2 mg/L, nitrate 0.0 to 5 mg/L , nitrite 0.0 to 0.2 mg/L and fluoride 1.0 to 2.0 mg/L. Coli form test revealed presence of pathogenic bacteria. Based on the investigation it is concluded that Kanbargi Lake is less polluted but unfit for drinkin

    Cerium Oxide Nanoparticle-Loaded Gelatin Methacryloyl Hydrogel Wound-Healing Patch with Free Radical Scavenging Activity

    No full text
    Nonhealing wounds in diabetic patients are a critical challenge, which often cause amputation and mortality. High levels of oxidative stress and aberrations in antioxidant defense mechanisms increase the adverse manifestations of diabetes mellitus. In this study, we developed a biodegradable gelatin methacryloyl (GelMA) hydrogel patch incorporated with cerium oxide nanoparticles (CONPs) for promoting diabetic wound healing. The patches were thoroughly characterized for the morphology, physicomechanical properties, free radical scavenging activity, in vitro cell proliferation, and in vivo diabetic wound healing activity. Highly porous and biodegradable patches showed excellent exudate uptake capacity as evident from the many-fold weight gain (400-700 times) when placed in aqueous medium. Results of free radical scavenging assays clearly indicated that the patches loaded with 1-4% w/w CONPs could effectively inactivate experimentally generated free radicals. Obtained results of in vitro cell culture studies clearly indicated that CONP-incorporated patches could favor the proliferation of skin-associated cells such as keratinocytes and fibroblasts. Results of the wound healing study showed that 1% w/w CONP-loaded patches could effectively improve the healing of wounds in diabetic rats. Overall results indicate that CONP-loaded GelMA hydrogels are highly promising materials for developing clinically relevant patches for treating diabetic wounds.Scopu

    Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications

    No full text
    Achieving the healing of chronic diabetic ulcers, burn wounds and large traumatic wounds is a major clinical challenge. A variety of approaches have been undertaken to generate skin substitutes, wound healing patches or dressings with adequate barrier properties, stability, degradation, exudate uptake capacity, antimicrobial properties, vascularization potential and wound-healing capacity. Recent approaches to support chronic wound healing focus on the development of a natural extracellular matrix (ECM) mimetic microenvironment in the wound bed. Submicron fiber-based membranes have been shown to successfully mimic many features of the ECM such as its architecture, mechanical properties, composition, and function. Electrospinning is one of the most successful methods for producing porous submicron fiber based wound coverage matrices for promoting wound healing and achieving tissue regeneration. The ECM mimetic properties of the membranes have also been improved with the use of recently developed methods such as coaxial electrospinning with other polymers. Various active components such as therapeutic agents, nanoparticles and biomolecules can be incorporated in electrospun fibers to improve ECM mimetic features and provide additional advantages like antibacterial and angiogenic properties. This article comprehensively overviews the applications of ECM mimetic electrospun membranes as structural and functional components in wound healing and the potential challenges imposed by them in a clinical point of view.Scopu

    Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications

    No full text
    In situ tissue engineering is emerging as a novel approach in tissue engineering to repair damaged tissues by boosting the natural ability of the body to heal itself. This can be achieved by providing suitable signals and scaffolds that can augment cell migration, cell adhesion on the scaffolds and proliferation of endogenous cells that facilitate the repair. Lack of appropriate cell proliferation and angiogenesis are among the major issues associated with the limited success of in situ tissue engineering during in vivo studies. Exploitation of metal oxide nanoparticles such as yttrium oxide (Y2O3) nanoparticles may open new horizons in in situ tissue engineering by providing cues that facilitate cell proliferation and angiogenesis in the scaffolds. In this context, Y2O3 nanoparticles were synthesized and incorporated in polycaprolactone (PCL) scaffolds to enhance the cell proliferation and angiogenic properties. An optimum amount of Y2O3-containing scaffolds (1% w/w) promoted the proliferation of fibroblasts (L-929) and osteoblast-like cells (UMR-106). Results of chorioallantoic membrane (CAM) assay and the subcutaneous implantation studies in rats demonstrated the angiogenic potential of the scaffolds loaded with Y2O3 nanoparticles. Gene expression study demonstrated that the presence of Y2O3 in the scaffolds can upregulate the expression of cell proliferation and angiogenesis related biomolecules such as VEGF and EGFR. Obtained results demonstrated that Y2O3 nanoparticles can perform a vital role in tissue engineering scaffolds to promote cell proliferation and angiogenesis. - 2019This research was supported by Science and Engineering Research Board (SERB), New Delhi (NPDF, No. PDF/2016/000499 ). In addition, this article was made possible by the NPRP9-144-3-021 grant funded by Qatar National Research Fund (a part of Qatar Foundation). The statements made here are totally responsibility of authors. Appendix AScopu

    Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications

    No full text
    Insufficient cell proliferation, cell migration, and angiogenesis are among the major causes for nonhealing of chronic diabetic wounds. Incorporation of cerium oxide nanoparticles (nCeO2) in wound dressings can be a promising approach to promote angiogenesis and healing of diabetic wounds. In this paper, we report the development of a novel nCeO2 containing electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membrane for diabetic wound healing applications. In vitro cell adhesion studies, chicken embryo angiogenesis assay, and in vivo diabetic wound healing studies were performed to assess the cell proliferation, angiogenesis, and wound healing potential of the developed membranes. The experimental results showed that nCeO2 containing PHBV membranes can promote cell proliferation and cell adhesion when used as wound dressings. For less than 1% w/w of nCeO2 content, human mammary epithelial cells (HMEC) were adhered parallel to the individual fibers of PHBV. For higher than 1% w/w of nCeO2 content, cells started to flatten and spread over the fibers. In ovo angiogenic assay showed the ability of nCeO2 incorporated PHBV membranes to enhance blood vessel formation. In vivo wound healing study in diabetic rats confirmed the wound healing potential of nCeO2 incorporated PHBV membranes. The study suggests that nCeO2 incorporated PHBV membranes have strong potential to be used as wound dressings to enhance cell proliferation and vascularization and promote the healing of diabetic wounds.Scopu

    Development of nitric oxide releasing visible light crosslinked gelatin methacrylate hydrogel for rapid closure of diabetic wounds

    No full text
    Management of non-healing and slow to heal diabetic wounds is a major concern in healthcare across the world. Numerous techniques have been investigated to solve the issue of delayed wound healing, though, mostly unable to promote complete healing of diabetic wounds due to the lack of proper cell proliferation, poor cell-cell communication, and higher chances of wound infections. These challenges can be minimized by using hydrogel based wound healing patches loaded with bioactive agents. Gelatin methacrylate (GelMA) has been proven to be a highly cell friendly, cell adhesive, and inexpensive biopolymer for various tissue engineering and wound healing applications. In this study, S-Nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was incorporated in a highly porous GelMA hydrogel patch to improve cell proliferation, facilitate rapid cell migration, and enhance diabetic wound healing. We adopted a visible light crosslinking method to fabricate this highly porous biodegradable but relatively stable patch. Developed patches were characterized for morphology, NO release, cell proliferation and migration, and diabetic wound healing in a rat model. The obtained results indicate that SNAP loaded visible light crosslinked GelMA hydrogel patches can be highly effective in promoting diabetic wound healing.Scopu

    Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing

    No full text
    Management of chronic diabetic ulcers remains as a major challenge in healthcare which requires extensive multidisciplinary approaches to ensure wound protection, management of excess wound exudates and promoting healing. Developing wound healing patches that can act as a protective barrier and support healing is highly needed to manage chronic diabetic ulcers. In order to boost the wound healing potential of patch material, bioactive agents such as growth factors can be used. Porous membranes made of nanofibers generated using electrospinning have potential for application as wound coverage matrices. However, electrospun membranes produced from several biodegradable polymers are hydrophobic and cannot manage the excess exudates produced by chronic wounds. Gelatin-methacryloyl (GelMA) hydrogels absorb excess exudates and provide an optimal biological environment for the healing wound. Epidermal growth factor (EGF) promotes cell migration, angiogenesis and overall wound healing. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membranes provide microbial, thermal and mechanical barrier properties to the wound healing patch. Herein, we developed a biodegradable polymeric patch based on the combination of mechanically stable electrospun PHBV, GelMA hydrogel and EGF for promoting diabetic wound healing. In vitro and in vivo studies were carried out to evaluate the effect of developed patches on cell proliferation, cell migration, angiogenesis and wound healing. Our results showed that EGF loaded patches can promote the migration and proliferation of multiple types of cells (keratinocytes, fibroblasts and endothelial cells) and enhance angiogenesis. In situ development of the patch and subsequent in vivo wound healing study in diabetic rats showed that EGF loaded patches provide rapid healing compared to control wounds. Interestingly, 100 ng EGF per cm2 of the patches was enough to provide favourable cellular response, angiogenesis and rapid diabetic wound healing. Overall results indicate that EGF loaded PHBV-GelMA hybrid patch could be a promising approach to promote diabetic wound healing.Scopu
    corecore