11 research outputs found

    Impaired receptor-mediated endocytosis by the asialoglycoprotein receptor in ethanol-fed mice: implications for studying the role of this receptor in alcoholic apoptosis

    Get PDF
    During receptor-mediated endocytosis (RME), extracellular molecules are internalized after being recognized and bound to specific cell surface receptors. In previous studies of the asialoglycoprotein receptor (ASGPR) in rats, we showed that ethanol impairs RME at multiple ASGPR sites. Ethanol administration has been shown to increase apoptosis, and we demonstrated increased sensitization to apoptotic induction in hepatocytes from ethanol-fed rats. Although a physiological role for the ASGPR has not been identified, investigators have shown its involvement in the uptake/clearance of apoptotic cells in vitvo. This suggests a potential role for the ASGPR in the removal of apoptotic cells, and the recent availability of an ASGPR-deficient mouse strain provides an excellent opportunity to examine the role of the ASGPR during ethanol impairment. In this study, we examined ethanol-impaired RME in mice and began the characterization of ASGPR-deficient mice for use in ethanol studies. Similar to our findings with rats, ligand binding, internalization, and degradation were decreased 45-50% in hepatocytes from ethanol-fed wild-type mice. In ASGPR-deficient mice, these parameters did not vary among the chow-fed, pair-fed control, or ethanol groups and were negligible compared with those of wild-type mice. TUNEL analysis of liver sections showed an ethanol-induced increase in apoptotic bodies in all mouse strains with a significant difference in the receptor-deficient mice. Further, the livers of ASGPR-deficient mice had three times more apoptotic bodies, in all feeding groups, compared with wild-type mice. These results support the use of the ASGPR-deficient mouse model for studying ethanol-induced liver injury, specifically ethanol-induced apoptosis

    Relaxin Receptors in Hepatic Stellate Cells and Cirrhotic Liver

    Get PDF
    The polypeptide hormone relaxin has antifibrotic effects on a number of tissues, including the liver. Central to the progression of hepatic fibrosis is the transdifferentiation of hepatic stellate cells (HSC) from a quiescent state to an activated, myofibroblastic phenotype that secretes fibrillar collagen. Relaxin inhibits markers of HSC activation, but relaxin receptor expression in the liver is unclear. The purpose of this study was to determine the expression of the relaxin receptors LGR7 and LGR8 in activated HSC. Production of cAMP was induced by treatment of HSC with relaxin, or the relaxin-related peptides InsL3 or relaxin-3, selective activators of LGR8 and LGR7, respectively. Quiescent HSC expressed low levels of LGR7 but not LGR8. During progression to the activated phenotype, expression of both receptors increased markedly. Immunocytochemistry confirmed the presence of both receptors in activated HSC. In normal rat liver, LGR7, but not LGR8, was expressed at low levels. In cirrhotic liver, expression of both receptors significantly increased. Neither receptor was detectable in normal liver by immunohistochemistry, but both LGR7 and LGR8 were readily detectable in cirrhosis. These results were confirmed in human cirrhotic tissue, with the additional finding of occasional perisinusoidal LGR7 immunoreactivity in non-cirrhotic tissue. In conclusion, the expression of LGR7 and LGR8 is increased with activation of HSC in culture. Cirrhosis also caused increased expression of both receptors. Therefore, agents that stimulate LGR8 and LGR7 may be therapeutically useful to limit the activation of hepatic stellate cells in liver injury

    Carbon Tetrachloride-Induced Liver Damage in Asialoglycoprotein Receptor-Deficient Mice

    Get PDF
    The asialoglycoprotein (ASGP) receptor is an abundant hepatocyte-specific receptor involved in receptor-mediated endocytosis. This receptor’s abundance and function is decreased by chronic ethanol administration prior to the appearance of pathology such as necrosis or inflammation. Hence, this study aimed to determine if ASGP receptor function is required to protect against liver injury by utilizing a knockout mouse model lacking functional ASGP receptor in the setting of carbon tetrachloride (CCl4) hepatotoxicity. Briefly, ASGP receptor-deficient (RD) mice and wild-type (WT) mice were injected with 1 ml/kg body weight of CCl4. In the subsequent week, mice were monitored for liver damage and pathology (aspartate transaminase (AST), alanine transaminase (ALT) and light microscopy). The consequences of CCl4 injection were examined by measuring α-smooth muscle actin (α-SMA) deposition, contents of malondialdehyde and the percentage of apoptotic hepatocytes. After CCl4 injection, RD mice showed increased liver pathology together with significantly increased activities of AST and ALT compared to that in WT mice. There were also significantly more apoptotic bodies, lipid peroxidation and deposition of α-SMA in RD mice versus WT mice following CCl4 injection. Since these two mouse strains only differ in whether or not they have the ASGP receptor, it can be concluded that proper ASGP receptor function exerted a protective effect against CCl4 toxicity. Thus, receptor-mediated endocytosis by the ASGP receptor could represent a novel molecular mechanism that is responsible for subsequent liver health or injury

    The Role of Housing-Related Inputs in the Household Production of Children’s Health and Education: Some Empirical Results

    No full text
    corecore