9,313 research outputs found

    Cascade atom in high-Q cavity: The spectrum for non-Markovian decay

    Full text link
    The spontaneous emission spectrum for a three level cascade configuration atom in a single mode high-Q cavity coupled to a zero temperature reservoir of continuum external modes is determined from the atom-cavity mode master equation using the quantum regression theorem. Initially the atom is in its upper state and the cavity mode empty of photons. Following Glauber, the spectrum is defined via the response of a detector atom. Spectra are calculated for the detector located inside the cavity (case A), outside the cavity end mirror (Case B-end emission), or placed for emission out the side of the cavity (Case C). The spectra for case A and case B are found to be essentially the same. In all the cases the predicted lineshapes are free of instrumental effects and only due to cavity decay. Spectra are presented for intermediate and strong coupling regime situations (where both atomic transitions are resonant with the cavity frequency), for cases of non-zero cavity detuning, and for cases where the two atomic transition frequencies differ. The spectral features for Cases B(A) and C are qualitatively similar, with six spectral peaks for resonance cases and eight for detuned cases. These general features of the spectra can be understood via the dressed atom model. However, Case B and C spectra differ in detail, with the latter exhibiting a deep spectral hole at the cavity frequency due to quantum interference effects.Comment: 29 pages, 14 figures; v2: very minor correction to two equations, thicker lines in some figure

    Field Quantization, Photons and Non-Hermitean Modes

    Get PDF
    Field quantization in three dimensional unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes in both the cavity and external regions. The cavity non-Hermitean modes (NHM) are treated using the paraxial and monochromaticity approximations. The NHM bi-orthogonality relationships are used in a standard canonical quantization procedure based on introducing generalised coordinates and momenta for the electromagnetic (EM) field. The quantum EM field is equivalent to a set of quantum harmonic oscillators (QHO), associated with either the cavity or the external region NHM. This confirms the validity of the photon model in unstable optical systems, though the annihilation and creation operators for each QHO are not Hermitean adjoints. The quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which is sum of independent QHO Hamiltonians for each NHM, but the external field Hamiltonian also includes a coupling term responsible for external NHM photon exchange processes. Cavity energy gain and loss processes is associated with the non-commutativity of cavity and external region operators, given in terms of surface integrals involving cavity and external region NHM functions on the cavity-external region boundary. The spontaneous decay of a two-level atom inside an unstable cavity is treated using the essential states approach and the rotating wave approximation. Atomic transitions leading to cavity NHM photon absorption have a different coupling constant to those leading to photon emission, a feature resulting from the use of NHM functions. Under certain conditions the decay rate is enhanced by the Petermann factor.Comment: 38 pages, tex, 2 figures, ps. General expression for decay rate added. To be published in Journal of Modern Optic

    The Apm Galaxy Survey IV: Redshifts of Rich Clusters of Galaxies

    Full text link
    We present redshifts for a sample of 229 clusters selected from the APM Galaxy Survey, 189 of which are new redshift determinations. Non-cluster galaxy redshifts have been rejected from this sample using a likelihood ratio test based on the projected and apparent magnitude distributions of the cluster fields. We test this technique using cluster fields in which redshifts have been measured for more than 10 galaxies. Our redshift sample is nearly complete and has been used in previous papers to study the three dimensional distribution of rich clusters of galaxies. 157 of the clusters in our sample are listed in the Abell catalogue or supplement, and the remainder are new cluster identifications.Comment: 15 pages UUencoded compressed postscript. Submitted to Monthly Notices of the R.A.

    Radio Galaxy Clustering at z~0.3

    Get PDF
    Radio galaxies are uniquely useful as probes of large-scale structure as their uniform identification with giant elliptical galaxies out to high redshift means that the evolution of their bias factor can be predicted. As the initial stage in a project to study large-scale structure with radio galaxies we have performed a small redshift survey, selecting 29 radio galaxies in the range 0.19<z<0.45 from a contiguous 40 square degree area of sky. We detect significant clustering within this sample. The amplitude of the two-point correlation function we measure is consistent with no evolution from the local (z<0.1) value. This is as expected in a model in which radio galaxy hosts form at high redshift and thereafter obey a continuity equation, although the signal:noise of the detection is too low to rule out other models. Larger surveys out to z~1 should reveal the structures of superclusters at intermediate redshifts and strongly constrain models for the evolution of large-scale structure.Comment: 7 pages, 3 figures, accepted by ApJ Letter

    CEQE: Contextualized Embeddings for Query Expansion

    Get PDF
    In this work we leverage recent advances in context-sensitive language models to improve the task of query expansion. Contextualized word representation models, such as ELMo and BERT, are rapidly replacing static embedding models. We propose a new model, Contextualized Embeddings for Query Expansion (CEQE), that utilizes query-focused contextualized embedding vectors. We study the behavior of contextual representations generated for query expansion in ad-hoc document retrieval. We conduct our experiments on probabilistic retrieval models as well as in combination with neural ranking models. We evaluate CEQE on two standard TREC collections: Robust and Deep Learning. We find that CEQE outperforms static embedding-based expansion methods on multiple collections (by up to 18% on Robust and 31% on Deep Learning on average precision) and also improves over proven probabilistic pseudo-relevance feedback (PRF) models. We further find that multiple passes of expansion and reranking result in continued gains in effectiveness with CEQE-based approaches outperforming other approaches. The final model incorporating neural and CEQE-based expansion score achieves gains of up to 5% in P@20 and 2% in AP on Robust over the state-of-the-art transformer-based re-ranking model, Birch

    The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant

    Get PDF
    PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    Non-Markovian Decay of a Three Level Cascade Atom in a Structured Reservoir

    Get PDF
    We present a formalism that enables the study of the non-Markovian dynamics of a three-level ladder system in a single structured reservoir. The three-level system is strongly coupled to a bath of reservoir modes and two quantum excitations of the reservoir are expected. We show that the dynamics only depends on reservoir structure functions, which are products of the mode density with the coupling constant squared. This result may enable pseudomode theory to treat multiple excitations of a structured reservoir. The treatment uses Laplace transforms and an elimination of variables to obtain a formal solution. This can be evaluated numerically (with the help of a numerical inverse Laplace transform) and an example is given. We also compare this result with the case where the two transitions are coupled to two separate structured reservoirs (where the example case is also analytically solvable)
    • …
    corecore