10 research outputs found

    Macroscopic Alignment of One-Dimensional Conjugated Polymer Nanocrystallites for High-Mobility Organic Field-Effect Transistors

    No full text
    Controlling the morphology of polymer semiconductors remains a fundamental challenge that hinders their widespread applications in electronic and optoelectronic devices and commercial feasibility. Although conjugated polymer nanowires (NWs) are envisioned to afford high charge-carrier mobility, the alignment of preformed conjugated polymer NWs has not been reported. Here, we demonstrate an extremely simple and effective strategy to generate well-aligned arrays of one-dimensional (1D) polymer semiconductors that exhibit remarkable enhancement in charge transport using a solution shear-coating technique. We show that solution shear coating of poly­(alkylthiophene) NWs induces extension or coplanarization of the polymer backbone and highly aligned network films, which results in enhanced intra- and intermolecular ordering and reduced grain boundaries. Consequently, highly aligned poly­(3-hexylthiophene) NWs exhibited over 33-fold enhancement in the average carrier mobility, with the highest mobility of 0.32 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> compared to pristine films. The presented platform is a promising strategy and general approach for achieving well-aligned 1D nanostructures of polymer semiconductors and could enable the next generation of high-performance flexible electronic devices for a wide range of applications

    Anisotropic Assembly of Conjugated Polymer Nanocrystallites for Enhanced Charge Transport

    No full text
    The anisotropic assembly of P3HT nanocrystallites into longer nanofibrillar structures was demonstrated via sequential UV irradiation after ultrasonication to the pristine polymer solutions. The morphology of resultant films was studied by atomic force microscopy (AFM), and quantitative analysis of intra- and intermolecular ordering of polymer chains was performed by means of static absorption spectroscopy and quantitative modeling. Consequently, the approach to treat the precursor solution enhanced intra- and intermolecular ordering and reduced the incidence of grain boundaries within P3HT films, which contributed to the excellent charge carrier transport characteristics of the corresponding films (μ ≈ 12.0 × 10<sup>–2</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for 96% RR P3HT)

    Ultrasound-Induced Ordering in Poly(3-hexylthiophene): Role of Molecular and Process Parameters on Morphology and Charge Transport

    No full text
    Facile methods for controlling the microstructure of polymeric semiconductors are critical to the success of large area flexible electronics. Here we explore ultrasonic irradiation of solutions of poly­(3-hexylthiophene) (P3HT) as a simple route to creating ordered molecular aggregates that result in a one to two order of magnitude improvement in field effect mobility. A detailed investigation of the ultrasound induced phenomenon, including the role of solvent, polymer regioregularity (RR) and film deposition method, is conducted. Absorption spectroscopy reveals that the development of low energy vibronic features is dependent on both the regioregularity as well as the solvent, with the latter especially influential on the intensity and shape of the band. Use of either higher regioregular polymer or ultrasonic irradiation of lower regioregular polymer solutions results in high field effect mobilities that are nearly independent of the dynamics of the film formation process. Surprisingly, no distinct correlation between thin-film morphology and macroscopic charge transport could be ascertained. The relationships between molecular and process parameters are very subtle: modulation of one effects changes in the others, which in turn impact charge transport on the macroscale. Our results provide insight into the degree of control that is required for the development of reproducible, robust materials and processes for advanced flexible electronics based on polymeric materials

    Photoinduced Anisotropic Assembly of Conjugated Polymers in Insulating Polymer Blends

    No full text
    Low-dose UV irradiation of poly­(3-hexylthiophene) (P3HT)-insulating polymer (polystyrene (PS) or polyisobutylene (PIB)) blend solutions led to the formation of highly ordered P3HT nanofibrillar structures in solidified thin films. The P3HT nanofibers were effectively interconnected through P3HT islands phase-separated from insulating polymer regions in blend films comprising a relatively low fraction of P3HT. Films prepared with a P3HT content as low as 5 wt % exhibited excellent macroscopic charge transport characteristics. The impact of PS on P3HT intramolecular and intermolecular interactions was systematically investigated. The presence of PS chains appeared to assist in the UV irradiation process of the blend solutions to facilitate molecular interactions of the semiconductor component, and to enhance P3HT chain interactions during spin coating because of relatively unfavorable P3HT–PS chain interactions. However, P3HT lamellar packing was hindered in the presence of PS chains, because of favorable hydrophobic interactions between the P3HT hexyl substituents and the PS chains. As a result, the lamellar packing <i>d</i>-spacing increased, and the coherence length corresponding to the lamellar packing decreased, as the amount of PS in the blend films increased

    Elastomer–Polymer Semiconductor Blends for High-Performance Stretchable Charge Transport Networks

    No full text
    An inverse relationship between mechanical ductility and mobility/molecular ordering in conjugated polymer systems was determined definitively through systematic interrogation of poly­(3-hexylthiophene) (P3HT) films with varied degrees of molecular ordering and associated charge transport performance. The dilemma, whereby molecular ordering required for efficient charge transport conclusively undermines the applicability of these materials for stretchable, flexible device applications, was resolved using a polymer blend approach. Specifically, the molecular interactions between dissimilar polymer materials advantageously induced semiconducting polymer ordering into efficient π–π stacked fibrillar networks. Changes in the molecular environment surrounding the conjugated polymer during the elastomer curing process further facilitated development of high mobility networked semiconductor pathways. A processed P3HT: poly­(dimethylsiloxane) (PDMS) composite afforded a semiconducting film that exhibits superior ductility and notable mobility versus the single-component polymer semiconductor counterpart

    Toward Uniformly Dispersed Battery Electrode Composite Materials: Characteristics and Performance

    No full text
    Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches for improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. The study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials

    Protein-Assisted Assembly of π‑Conjugated Polymers

    No full text
    In an aqueous suspension process, protein dispersions facilitated improved alignment and organization of poly­(3-hexylthiophene) (P3HT) chains into highly ordered crystalline structures. A solution of P3HT in 1,2,4-trichlorobenzene (TCB) was added to an aqueous dispersion of the hydrophobin, Cerato ulmin (CU). Upon gentle agitation, the semiconductor solution was readily confined within CU membrane-stabilized microstructures, often with extended shapes. UV–vis and polarized micro-Raman spectroscopy suggested complex, enhanced molecular alignment due to a transition from isotropic to liquid crystalline fluid to polycrystalline states. Grazing-incidence X-ray diffraction corroborates this interpretation. On aging, the initial CU:P3HT/TCB structures develop dendritic architectures that slowly release polymer-containing capsules. The counterintuitive evolution from large structures to smaller ones suggests the initial structures were nonequilibrium, and it opens the door to latex-like processing of semiconducting polymers into crystalline, high-performance thin films for device applications. Preliminary studies using an organic field-effect transistor architecture suggest that optimized processing and device configuration will enable highly crystalline active materials with efficient charge transport characteristics

    Protein-Assisted Assembly of π‑Conjugated Polymers

    No full text
    In an aqueous suspension process, protein dispersions facilitated improved alignment and organization of poly­(3-hexylthiophene) (P3HT) chains into highly ordered crystalline structures. A solution of P3HT in 1,2,4-trichlorobenzene (TCB) was added to an aqueous dispersion of the hydrophobin, Cerato ulmin (CU). Upon gentle agitation, the semiconductor solution was readily confined within CU membrane-stabilized microstructures, often with extended shapes. UV–vis and polarized micro-Raman spectroscopy suggested complex, enhanced molecular alignment due to a transition from isotropic to liquid crystalline fluid to polycrystalline states. Grazing-incidence X-ray diffraction corroborates this interpretation. On aging, the initial CU:P3HT/TCB structures develop dendritic architectures that slowly release polymer-containing capsules. The counterintuitive evolution from large structures to smaller ones suggests the initial structures were nonequilibrium, and it opens the door to latex-like processing of semiconducting polymers into crystalline, high-performance thin films for device applications. Preliminary studies using an organic field-effect transistor architecture suggest that optimized processing and device configuration will enable highly crystalline active materials with efficient charge transport characteristics

    Protein-Assisted Assembly of π‑Conjugated Polymers

    No full text
    In an aqueous suspension process, protein dispersions facilitated improved alignment and organization of poly­(3-hexylthiophene) (P3HT) chains into highly ordered crystalline structures. A solution of P3HT in 1,2,4-trichlorobenzene (TCB) was added to an aqueous dispersion of the hydrophobin, Cerato ulmin (CU). Upon gentle agitation, the semiconductor solution was readily confined within CU membrane-stabilized microstructures, often with extended shapes. UV–vis and polarized micro-Raman spectroscopy suggested complex, enhanced molecular alignment due to a transition from isotropic to liquid crystalline fluid to polycrystalline states. Grazing-incidence X-ray diffraction corroborates this interpretation. On aging, the initial CU:P3HT/TCB structures develop dendritic architectures that slowly release polymer-containing capsules. The counterintuitive evolution from large structures to smaller ones suggests the initial structures were nonequilibrium, and it opens the door to latex-like processing of semiconducting polymers into crystalline, high-performance thin films for device applications. Preliminary studies using an organic field-effect transistor architecture suggest that optimized processing and device configuration will enable highly crystalline active materials with efficient charge transport characteristics

    Ordering of Poly(3-hexylthiophene) in Solutions and Films: Effects of Fiber Length and Grain Boundaries on Anisotropy and Mobility

    No full text
    Long-range ordering emerges in poly­(3-hexylthiophene) (P3HT) solutions during time-dependent aggregation. Here, aggregation of P3HT in chloroform solution was induced by ultrasonication, aging, and combinations thereof. UV–vis spectroscopy and polarized optical microscopy demonstrated that long-range ordering in the solution and subsequently the solid state depends on assembled P3HT fiber length, as determined by film atomic force microscopy. Ultrasonication induced the formation of fibers that were relatively short compared to those obtained through aging. As a result, ultrasonication afforded isotropic solutions and films, whereas aging afforded anisotropic solutions and films. The impact of fiber length and anisotropy on macroscopic charge transport performance was evaluated using an organic field-effect transistor (OFET) architecture. Both aged and sonicated solutions exhibited charge carrier mobilities that were an order of magnitude higher than that obtained for pristine samples. Aging of sonicated solutions enabled semiconducting thin films with significantly higher mobilities (1.5 × 10<sup>–1</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>) than those of either solution processing technique. Furthermore, the results indicate that grain boundary morphology has a significant impact on macroscopic charge carrier mobility. Grazing incidence wide-angle X-ray scattering demonstrated that the combined sonication/aging method affords a solidified film where the semiconductor exhibits a highly edge-on orientation. The results suggest that the nucleation and growth of aggregates can be controlled via solution processing methods and thus may allow the manipulation of active layer orientation, crystal packing density, and crystallite size. The investigation provides insight into the conjugated polymer solution process parameters that impact polymer ordering and aggregation in solution and resultant thin films for high-performance organic electronic devices
    corecore