2,503 research outputs found
On the choice of parameters in solar structure inversion
The observed solar p-mode frequencies provide a powerful diagnostic of the
internal structure of the Sun and permit us to test in considerable detail the
physics used in the theory of stellar structure. Amongst the most commonly used
techniques for inverting such helioseismic data are two implementations of the
optimally localized averages (OLA) method, namely the Subtractive Optimally
Localized Averages (SOLA) and Multiplicative Optimally Localized Averages
(MOLA). Both are controlled by a number of parameters, the proper choice of
which is very important for a reliable inference of the solar internal
structure. Here we make a detailed analysis of the influence of each parameter
on the solution and indicate how to arrive at an optimal set of parameters for
a given data set.Comment: 14 pages, 15 figures. Accepted for publication on MNRA
Giant star seismology
The internal properties of stars in the red-giant phase undergo significant
changes on relatively short timescales. Long near-uninterrupted high-precision
photometric timeseries observations from dedicated space missions such as CoRoT
and Kepler have provided seismic inferences of the global and internal
properties of a large number of evolved stars, including red giants. These
inferences are confronted with predictions from theoretical models to improve
our understanding of stellar structure and evolution. Our knowledge and
understanding of red giants have indeed increased tremendously using these
seismic inferences, and we anticipate that more information is still hidden in
the data. Unraveling this will further improve our understanding of stellar
evolution. This will also have significant impact on our knowledge of the Milky
Way Galaxy as well as on exo-planet host stars. The latter is important for our
understanding of the formation and structure of planetary systems.Comment: Invited review for The Astronomy and Astrophysics Review, accepted
for publicatio
On the asymptotic acoustic-mode phase in red-giant stars and its dependence on evolutionary state
Asteroseismic investigations based on the wealth of data now available,in
particular from the CoRoT and Kepler missions, require a good understanding of
the relation between the observed quantities and the properties of the
underlying stellar structure. Kallinger et al. 2012 found a relation between
their determination of the asymptotic phase of radial oscillations in evolved
stars and the evolutionary state, separating ascending-branch red giants from
helium-burning stars in the `red clump'. Here we provide a detailed analysis of
this relation, which is found to derive from differences between these two
classes of stars in the thermodynamic state of the convective envelope. There
is potential for distinguishing red giants and clump stars based on the phase
determined from observations that are too short to allow distinction based on
determination of the period spacing for mixed modes. The analysis of the phase
may also point to a better understanding of the potential for using the
helium-ionization-induced acoustic glitch to determine the helium abundance in
the envelopes of these stars.Comment: MNRAS, in the pres
Stellar Oscillations Network Group
Stellar Oscillations Network Group (SONG) is an initiative aimed at designing
and building a network of 1m-class telescopes dedicated to asteroseismology and
planet hunting. SONG will have 8 identical telescope nodes each equipped with a
high-resolution spectrograph and an iodine cell for obtaining precision radial
velocities and a CCD camera for guiding and imaging purposes. The main
asteroseismology targets for the network are the brightest (V<6) stars. In
order to improve performance and reduce maintenance costs the instrumentation
will only have very few modes of operation. In this contribution we describe
the motivations for establishing a network, the basic outline of SONG and the
expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22
September 2006. Comm. in Asteroseismology, Vol. 150, in the pres
ADIPLS -- the Aarhus adiabatic oscillation package
Development of the Aarhus adiabatic pulsation code started around 1978.
Although the main features have been stable for more than a decade, development
of the code is continuing, concerning numerical properties and output. The code
has been provided as a generally available package and has seen substantial use
at a number of installations. Further development of the package, including
bringing the documentation closer to being up to date, is planned as part of
the HELAS Coordination Action.Comment: Astrophys. Space Sci., in the pres
What Fraction of Boron-8 Solar Neutrinos arrive at the Earth as a nu_2 mass eigenstate?
We calculate the fraction of B^8 solar neutrinos that arrive at the Earth as
a nu_2 mass eigenstate as a function of the neutrino energy. Weighting this
fraction with the B^8 neutrino energy spectrum and the energy dependence of the
cross section for the charged current interaction on deuteron with a threshold
on the kinetic energy of the recoil electrons of 5.5 MeV, we find that the
integrated weighted fraction of nu_2's to be 91 \pm 2 % at the 95% CL. This
energy weighting procedure corresponds to the charged current response of the
Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values
for the solar mass squared difference and the mixing angle, obtained by
combining the data from all solar neutrino experiments and the reactor data
from KamLAND. The uncertainty on the nu_2 fraction comes primarily from the
uncertainty on the solar delta m^2 rather than from the uncertainty on the
solar mixing angle or the Standard Solar Model. Similar results for the
Super-Kamiokande experiment are also given. We extend this analysis to three
neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata
mixing matrix element U_{e2} as well as place a lower bound on the electron
number density in the solar B^8 neutrino production region.Comment: 23 pages, 8 postscript figures, latex. Dedicated to the memory of
John Bahcall who championed solar neutrinos for many lonely year
- …