7 research outputs found

    Municipal water quantities and health in Nunavut households: an exploratory case study in Coral Harbour, Nunavut, Canada

    Get PDF
    Background: Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives: Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods: Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results: Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions: The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households, however, are accessing water in quantities more typically seen in water insecure developing countries. We recommend several practical interventions and revisions to municipal water supply systems

    Advance Interconnect Circuit Modelling Design Using Fractional-Order Elements

    No full text

    Overview study of on-chip interconnect modelling approaches and its trend

    No full text

    Energy Efficient Bootstrapped CMOS Inverter for Ultra-Low Power Applications

    No full text

    Bootstrapped driver and the single-event-upset effect

    No full text
    As VLSI circuits are progressing in very Deep Submicron (DSM) regime without decreasing chip area, the importance of global interconnects increases but at the cost of performance and power consumption. This work proposes a low power circuit for driving a global interconnect at voltages close to the noise level. In order to address ultra-low power (ULP) design limitations, a novel driver scheme has been configured. This scheme uses a bootstrap circuitry which boosts the driver's ability to drive a long interconnect with an important feedback feature in it. Hence, this approach achieves two objectives: improving performance and mitigating power consumed. Those achievements are essential in designing ULP circuits along with occupying a smaller footprint and being immune to noise, observed in this design as well. These have been verified by comparing the proposed design to the previous and traditional circuits using a simulation tool. Additionally, the boosting based approach has been shown beneficial in mitigating the effects of single-event upsets (SEU), which are known to affect DSM circuits working under low voltages. As a result, the proposed circuit demonstrates a promising solution to address the energy and performance issues related to scaling effects on interconnects along with soft errors that can be caused by neutron particles

    Bootstrapped Driver and the Single-Event-Upset Effect

    No full text
    corecore