23 research outputs found

    A High Spectral Resolution Study of the Soft X-ray Background with the X-ray Quantum Calorimeter

    Full text link
    We present here a combined analysis of four high spectral resolution observations of the Diffuse X-ray Background (DXRB), made using the University of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter (XQC) sounding rocket payload. The observed spectra support the existence of a 0.1 \sim0.1~keV Local Hot Bubble and a 0.2 \sim0.2~keV Hot Halo, with discrepancies between repeated observations compatible with expected contributions of time-variable emission from Solar Wind Charge Exchange (SWCX). An additional component of 0.9 \sim0.9~keV emission observed only at low galactic latitudes can be consistently explained by unresolved dM stars.Comment: 21 pages, 6 figures, accepted for publication in Ap

    Characterization of the John A. Galt telescope for radio holography with CHIME

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systematics, notably the telescope beam, is required to successfully filter out the foregrounds. One technique being used to achieve a high fidelity measurement of the CHIME beam is radio holography, wherein signals from each of CHIME's analog inputs are correlated with the signal from a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m Galt telescope tracks a bright point source transiting over CHIME. In this work we present an analysis of several of the Galt telescope's properties. We employ driftscan measurements of several bright sources, along with background estimates derived from the 408 MHz Haslam map, to estimate the Galt system temperature. To determine the Galt telescope's beam shape, we perform and analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use early holographic measurements to measure the Galt telescope's geometry with respect to CHIME for the holographic analysis of the CHIME and Galt interferometric data set

    Design and implementation of a noise temperature measurement system for the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)

    Full text link
    This paper describes the design, implementation, and verification of a test-bed for determining the noise temperature of radio antennas operating between 400-800MHz. The requirements for this test-bed were driven by the HIRAX experiment, which uses antennas with embedded amplification, making system noise characterization difficult in the laboratory. The test-bed consists of two large cylindrical cavities, each containing radio-frequency (RF) absorber held at different temperatures (300K and 77K), allowing a measurement of system noise temperature through the well-known 'Y-factor' method. The apparatus has been constructed at Yale, and over the course of the past year has undergone detailed verification measurements. To date, three preliminary noise temperature measurement sets have been conducted using the system, putting us on track to make the first noise temperature measurements of the HIRAX feed and perform the first analysis of feed repeatability.Comment: 19 pages, 12 figure

    A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-α\alpha Forest

    Full text link
    We report the detection of 21 cm emission at an average redshift zˉ=2.3\bar{z} = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-α\alpha forest from eBOSS. Data collected by CHIME over 88 days in the 400500400-500~MHz frequency band (1.8<z<2.51.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k0.13 Mpc1k_\parallel \lesssim 0.13\ \text{Mpc}^{-1} at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-α\alpha forest flux transmission spectra to estimate the 21 cm-Lyman-α\alpha cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ9\sigma detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals 610\sim6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at z>1.8z>1.8

    Canada and the SKA from 2020-2030

    Get PDF
    This white paper submitted for the 2020 Canadian Long-Range Planning process (LRP2020) presents the prospects for Canada and the Square Kilometre Array (SKA) from 2020-2030, focussing on the first phase of the project (SKA1) scheduled to begin construction early in the next decade. SKA1 will make transformational advances in our understanding of the Universe across a wide range of fields, and Canadians are poised to play leadership roles in several. Canadian key SKA technologies will ensure a good return on capital investment in addition to strong scientific returns, positioning Canadian astronomy for future opportunities well beyond 2030. We therefore advocate for Canada's continued scientific and technological engagement in the SKA from 2020-2030 through participation in the construction and operations phases of SKA1.Comment: 14 pages, 4 figures, 2020 Canadian Long-Range Plan (LRP2020) white pape

    CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources

    Full text link
    We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events co-located on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from \sim220 pc cm3^{-3} to \sim1700 pc cm3^{-3}, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction and find that it tends to an equilibrium of 2.62.6+2.92.6_{-2.6}^{+2.9}% over our exposure thus far. We also report on 14 more sources which are promising repeating FRB candidates and which merit follow-up observations for confirmation.Comment: Submitted to ApJ. Comments are welcome and follow-up observations are encouraged

    Sub-second periodicity in a fast radio burst

    Full text link
    Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light-years. The nature of their progenitors and their emission mechanism remain open astrophysical questions. Here we report the detection of the multi-component FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components with a significance of 6.5 sigmas. The long (~3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models.Comment: Updated to conform to the accepted versio

    Faraday Tomography with CHIME: The “Tadpole” Feature G137+7

    Get PDF
    A direct consequence of Faraday rotation is that the polarized radio sky does not resemble the total intensity sky at long wavelengths. We analyze G137+7, which is undetectable in total intensity but appears as a depolarization feature. We use the first polarization maps from the Canadian Hydrogen Intensity Mapping Experiment. Our 400–729 MHz bandwidth and angular resolution, – , allow us to use Faraday synthesis to analyze the polarization structure. In polarized intensity and polarization angle maps, we find a tail extending 10° from the head and designate the combined object, the tadpole. Similar polarization angles, distinct from the background, indicate that the head and tail are physically associated. The head appears as a depolarized ring in single channels, but wideband observations show that it is a Faraday rotation feature. Our investigations of H I and Hα find no connections to the tadpole. The tail suggests motion of either the gas or an ionizing star through the interstellar medium; the B2(e) star HD 20336 is a candidate. While the head features a coherent, ∼ ‑8 rad m‑2 Faraday depth, Faraday synthesis also identifies multiple components in both the head and tail. We verify the locations of the components in the spectra using QU fitting. Our results show that approximately octave-bandwidth Faraday rotation observations at ∼600 MHz are sensitive to low-density ionized or partially ionized gas, which is undetectable in other tracers

    Effects of Uniaxial Stress on Mo and Mo/Cu Bilayer Superconducting Transitions

    No full text
    corecore