23 research outputs found
A High Spectral Resolution Study of the Soft X-ray Background with the X-ray Quantum Calorimeter
We present here a combined analysis of four high spectral resolution
observations of the Diffuse X-ray Background (DXRB), made using the University
of Wisconsin-Madison/Goddard Space Flight Center X-ray Quantum Calorimeter
(XQC) sounding rocket payload. The observed spectra support the existence of a
keV Local Hot Bubble and a keV Hot Halo, with discrepancies
between repeated observations compatible with expected contributions of
time-variable emission from Solar Wind Charge Exchange (SWCX). An additional
component of keV emission observed only at low galactic latitudes can
be consistently explained by unresolved dM stars.Comment: 21 pages, 6 figures, accepted for publication in Ap
Characterization of the John A. Galt telescope for radio holography with CHIME
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the
21 cm emission of astrophysical neutral hydrogen to probe large scale structure
at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath
substantially brighter foregrounds remains a key challenge. Due to the high
dynamic range between 21 cm and foreground emission, an exquisite calibration
of instrument systematics, notably the telescope beam, is required to
successfully filter out the foregrounds. One technique being used to achieve a
high fidelity measurement of the CHIME beam is radio holography, wherein
signals from each of CHIME's analog inputs are correlated with the signal from
a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m
Galt telescope tracks a bright point source transiting over CHIME. In this work
we present an analysis of several of the Galt telescope's properties. We employ
driftscan measurements of several bright sources, along with background
estimates derived from the 408 MHz Haslam map, to estimate the Galt system
temperature. To determine the Galt telescope's beam shape, we perform and
analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use
early holographic measurements to measure the Galt telescope's geometry with
respect to CHIME for the holographic analysis of the CHIME and Galt
interferometric data set
Design and implementation of a noise temperature measurement system for the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)
This paper describes the design, implementation, and verification of a
test-bed for determining the noise temperature of radio antennas operating
between 400-800MHz. The requirements for this test-bed were driven by the HIRAX
experiment, which uses antennas with embedded amplification, making system
noise characterization difficult in the laboratory. The test-bed consists of
two large cylindrical cavities, each containing radio-frequency (RF) absorber
held at different temperatures (300K and 77K), allowing a measurement of system
noise temperature through the well-known 'Y-factor' method. The apparatus has
been constructed at Yale, and over the course of the past year has undergone
detailed verification measurements. To date, three preliminary noise
temperature measurement sets have been conducted using the system, putting us
on track to make the first noise temperature measurements of the HIRAX feed and
perform the first analysis of feed repeatability.Comment: 19 pages, 12 figure
A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman- Forest
We report the detection of 21 cm emission at an average redshift in the cross-correlation of data from the Canadian Hydrogen Intensity
Mapping Experiment (CHIME) with measurements of the Lyman- forest from
eBOSS. Data collected by CHIME over 88 days in the ~MHz frequency band
() are formed into maps of the sky and high-pass delay filtered
to suppress the foreground power, corresponding to removing cosmological scales
with at the average redshift.
Line-of-sight spectra to the eBOSS background quasar locations are extracted
from the CHIME maps and combined with the Lyman- forest flux
transmission spectra to estimate the 21 cm-Lyman- cross-correlation
function. Fitting a simulation-derived template function to this measurement
results in a detection significance. The coherent accumulation of the
signal through cross-correlation is sufficient to enable a detection despite
excess variance from foreground residuals times brighter than the
expected thermal noise level in the correlation function. These results are the
highest-redshift measurement of \tcm emission to date, and set the stage for
future 21 cm intensity mapping analyses at
Canada and the SKA from 2020-2030
This white paper submitted for the 2020 Canadian Long-Range Planning process
(LRP2020) presents the prospects for Canada and the Square Kilometre Array
(SKA) from 2020-2030, focussing on the first phase of the project (SKA1)
scheduled to begin construction early in the next decade. SKA1 will make
transformational advances in our understanding of the Universe across a wide
range of fields, and Canadians are poised to play leadership roles in several.
Canadian key SKA technologies will ensure a good return on capital investment
in addition to strong scientific returns, positioning Canadian astronomy for
future opportunities well beyond 2030. We therefore advocate for Canada's
continued scientific and technological engagement in the SKA from 2020-2030
through participation in the construction and operations phases of SKA1.Comment: 14 pages, 4 figures, 2020 Canadian Long-Range Plan (LRP2020) white
pape
CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources
We present the discovery of 25 new repeating fast radio burst (FRB) sources
found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1.
The sources were found using a new clustering algorithm that looks for multiple
events co-located on the sky having similar dispersion measures (DMs). The new
repeaters have DMs ranging from 220 pc cm to 1700 pc
cm, and include sources having exhibited as few as two bursts to as many
as twelve. We report a statistically significant difference in both the DM and
extragalactic DM (eDM) distributions between repeating and apparently
nonrepeating sources, with repeaters having lower mean DM and eDM, and we
discuss the implications. We find no clear bimodality between the repetition
rates of repeaters and upper limits on repetition from apparently nonrepeating
sources after correcting for sensitivity and exposure effects, although some
active repeating sources stand out as anomalous. We measure the repeater
fraction and find that it tends to an equilibrium of % over
our exposure thus far. We also report on 14 more sources which are promising
repeating FRB candidates and which merit follow-up observations for
confirmation.Comment: Submitted to ApJ. Comments are welcome and follow-up observations are
encouraged
Sub-second periodicity in a fast radio burst
Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that
are visible at distances of billions of light-years. The nature of their
progenitors and their emission mechanism remain open astrophysical questions.
Here we report the detection of the multi-component FRB 20191221A and the
identification of a periodic separation of 216.8(1) ms between its components
with a significance of 6.5 sigmas. The long (~3 s) duration and nine or more
components forming the pulse profile make this source an outlier in the FRB
population. Such short periodicity provides strong evidence for a neutron-star
origin of the event. Moreover, our detection favours emission arising from the
neutron-star magnetosphere, as opposed to emission regions located further away
from the star, as predicted by some models.Comment: Updated to conform to the accepted versio
Faraday Tomography with CHIME: The “Tadpole” Feature G137+7
A direct consequence of Faraday rotation is that the polarized radio sky does not resemble the total intensity sky at long wavelengths. We analyze G137+7, which is undetectable in total intensity but appears as a depolarization feature. We use the first polarization maps from the Canadian Hydrogen Intensity Mapping Experiment. Our 400–729 MHz bandwidth and angular resolution, – , allow us to use Faraday synthesis to analyze the polarization structure. In polarized intensity and polarization angle maps, we find a tail extending 10° from the head and designate the combined object, the tadpole. Similar polarization angles, distinct from the background, indicate that the head and tail are physically associated. The head appears as a depolarized ring in single channels, but wideband observations show that it is a Faraday rotation feature. Our investigations of H I and Hα find no connections to the tadpole. The tail suggests motion of either the gas or an ionizing star through the interstellar medium; the B2(e) star HD 20336 is a candidate. While the head features a coherent, ∼ ‑8 rad m‑2 Faraday depth, Faraday synthesis also identifies multiple components in both the head and tail. We verify the locations of the components in the spectra using QU fitting. Our results show that approximately octave-bandwidth Faraday rotation observations at ∼600 MHz are sensitive to low-density ionized or partially ionized gas, which is undetectable in other tracers