9 research outputs found

    Standard for density of population aging.

    No full text
    The Yangtze River Delta urban agglomeration (YRDUA) is China’s most representative region with remarkable economic development vitality. The purpose of this study is to provide valuable data analysis to actively respond to the population aging in China. We mainly focus on the spatial and temporal evolution of population aging in YRDUA from 2000 to 2020 using city-level population data. This study constructs a multi-dimensional index system to measure population aging including population aging degree, speed, and density. It finds out: (1) the elderly population rate (EPR), the elder-child ratio (ECR), and the elderly dependency ratio (EDR) in the YRDUA area are gradually increasing from 2000 to 2020. In addition, the trends of these indicators in various cities and regions are relatively consistent. All 27 cities in YRDUA entered an aging society, from the primary to the moderate aging stage from 2000 to 2010 and from the moderate to the hyper aging stage from 2010 to 2020. (2) the absolute and relative growth rate of EPR is increasing from 2000 to 2020. However, the absolute and relative growth rate of ECR is increasing from 2000 to 2010 and then decreasing from 2010 to 2020. These results indicate that the two-child policy adopted by the Chinese government plays a positive role. (3) the density level of the elderly population in the YRDUA evolved from low in 2000 to middle in 2010 and then to high in 2020. (4) There are remarkable differences in the process of population aging among three provinces and one city. The contribution of this study is mainly reflected in two aspects: firstly, it constructs a multi-dimensional index system to measure population aging; secondly, using this multi-dimensional index system, it systematically observes the spatial and temporal evolution of population aging from 2000 to 2020 in the Yangtze River Delta Urban Agglomeration.</div

    Stages of population aging degree.

    No full text
    The Yangtze River Delta urban agglomeration (YRDUA) is China’s most representative region with remarkable economic development vitality. The purpose of this study is to provide valuable data analysis to actively respond to the population aging in China. We mainly focus on the spatial and temporal evolution of population aging in YRDUA from 2000 to 2020 using city-level population data. This study constructs a multi-dimensional index system to measure population aging including population aging degree, speed, and density. It finds out: (1) the elderly population rate (EPR), the elder-child ratio (ECR), and the elderly dependency ratio (EDR) in the YRDUA area are gradually increasing from 2000 to 2020. In addition, the trends of these indicators in various cities and regions are relatively consistent. All 27 cities in YRDUA entered an aging society, from the primary to the moderate aging stage from 2000 to 2010 and from the moderate to the hyper aging stage from 2010 to 2020. (2) the absolute and relative growth rate of EPR is increasing from 2000 to 2020. However, the absolute and relative growth rate of ECR is increasing from 2000 to 2010 and then decreasing from 2010 to 2020. These results indicate that the two-child policy adopted by the Chinese government plays a positive role. (3) the density level of the elderly population in the YRDUA evolved from low in 2000 to middle in 2010 and then to high in 2020. (4) There are remarkable differences in the process of population aging among three provinces and one city. The contribution of this study is mainly reflected in two aspects: firstly, it constructs a multi-dimensional index system to measure population aging; secondly, using this multi-dimensional index system, it systematically observes the spatial and temporal evolution of population aging from 2000 to 2020 in the Yangtze River Delta Urban Agglomeration.</div

    Population aging degree of Yangtze River Delta urban agglomeration.

    No full text
    (Shape file source: Republished from http://www.gscloud.cn under a CC BY license, with permission from Geospatial Data Cloud, original copyright [2022]; The map was created using ArcGIS 10.2 software and the calculation data of EPR, ECR, and EDR is sourced from relevant statistical yearbook).</p

    Speed of population aging in Yangtze river delta urban agglomeration (2000–2010).

    No full text
    Speed of population aging in Yangtze river delta urban agglomeration (2000–2010).</p

    S1 Data -

    No full text
    The Yangtze River Delta urban agglomeration (YRDUA) is China’s most representative region with remarkable economic development vitality. The purpose of this study is to provide valuable data analysis to actively respond to the population aging in China. We mainly focus on the spatial and temporal evolution of population aging in YRDUA from 2000 to 2020 using city-level population data. This study constructs a multi-dimensional index system to measure population aging including population aging degree, speed, and density. It finds out: (1) the elderly population rate (EPR), the elder-child ratio (ECR), and the elderly dependency ratio (EDR) in the YRDUA area are gradually increasing from 2000 to 2020. In addition, the trends of these indicators in various cities and regions are relatively consistent. All 27 cities in YRDUA entered an aging society, from the primary to the moderate aging stage from 2000 to 2010 and from the moderate to the hyper aging stage from 2010 to 2020. (2) the absolute and relative growth rate of EPR is increasing from 2000 to 2020. However, the absolute and relative growth rate of ECR is increasing from 2000 to 2010 and then decreasing from 2010 to 2020. These results indicate that the two-child policy adopted by the Chinese government plays a positive role. (3) the density level of the elderly population in the YRDUA evolved from low in 2000 to middle in 2010 and then to high in 2020. (4) There are remarkable differences in the process of population aging among three provinces and one city. The contribution of this study is mainly reflected in two aspects: firstly, it constructs a multi-dimensional index system to measure population aging; secondly, using this multi-dimensional index system, it systematically observes the spatial and temporal evolution of population aging from 2000 to 2020 in the Yangtze River Delta Urban Agglomeration.</div

    Population age structure.

    No full text
    The Yangtze River Delta urban agglomeration (YRDUA) is China’s most representative region with remarkable economic development vitality. The purpose of this study is to provide valuable data analysis to actively respond to the population aging in China. We mainly focus on the spatial and temporal evolution of population aging in YRDUA from 2000 to 2020 using city-level population data. This study constructs a multi-dimensional index system to measure population aging including population aging degree, speed, and density. It finds out: (1) the elderly population rate (EPR), the elder-child ratio (ECR), and the elderly dependency ratio (EDR) in the YRDUA area are gradually increasing from 2000 to 2020. In addition, the trends of these indicators in various cities and regions are relatively consistent. All 27 cities in YRDUA entered an aging society, from the primary to the moderate aging stage from 2000 to 2010 and from the moderate to the hyper aging stage from 2010 to 2020. (2) the absolute and relative growth rate of EPR is increasing from 2000 to 2020. However, the absolute and relative growth rate of ECR is increasing from 2000 to 2010 and then decreasing from 2010 to 2020. These results indicate that the two-child policy adopted by the Chinese government plays a positive role. (3) the density level of the elderly population in the YRDUA evolved from low in 2000 to middle in 2010 and then to high in 2020. (4) There are remarkable differences in the process of population aging among three provinces and one city. The contribution of this study is mainly reflected in two aspects: firstly, it constructs a multi-dimensional index system to measure population aging; secondly, using this multi-dimensional index system, it systematically observes the spatial and temporal evolution of population aging from 2000 to 2020 in the Yangtze River Delta Urban Agglomeration.</div

    Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    No full text
    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g<sup>–1</sup> were observed, respectively, at 0.1 A g<sup>–1</sup>. In addition, an impressive reversible capacity of 665 mAh g<sup>–1</sup> after 100 cycles at 0.1 A g<sup>–1</sup> and 452 mAh g<sup>–1</sup> after 1000 cycles at a high current density of 1.0 A g<sup>–1</sup> was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10–20 atomic layers, only a reversible capacity of 389 mAh g<sup>–1</sup> could be obtained after 100 cycles at 0.1 A g<sup>–1</sup>. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance

    Investigating the Influence of Mesoporosity in Zeolite Beta on Its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    No full text
    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intracrystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When it was used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 °C, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime in comparison to conventional zeolite beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytically active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity toward higher aliphatics (C<sub>4</sub>–C<sub>7</sub>) but lower ethene selectivity in comparison to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methylbenzaldehyde, in the coke, which has not been observed in the MTH reaction before

    Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries

    No full text
    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn<sub>2</sub>(benzimidazolate)<sub>2</sub>(OH)<sub>2</sub> at the air–water interface. The hydroxyl (−OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li–S battery shows that the Zn<sub>2</sub>(benzimidazolate)<sub>2</sub>(OH)<sub>2</sub> coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries
    corecore