240 research outputs found

    Experiences and perspectives of adults on using opioids for pain management in the postoperative period : A scoping review protocol.

    Get PDF
    Funding The main reviewer (DA) is funded by Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia and the Saudi Arabian Cultural Bureau in London, UK. This review will be part of DA’s PhD study at the University of Aberdeen.Peer reviewedPublisher PD

    Detection of Plasmodium Parasites from Images of Thin Blood Smears using Artificial Neural Networks

    Get PDF
    Despite all the efforts of all associations and health organizations around the world, the infections and deaths from the malaria disease are remain high, especially in the developing countries. Accurate and correct diagnosis of malaria helps in getting the appropriate treatment. This paper contains a design for automatic diagnostic system for malaria using Artificial Neural Networks (ANNs). Different image samples negative and positive were collected, and then ANN was designed and trained on it. The ANN type was Elman network and it achieved excellent performance in the test

    Constructional Design for Decontamination of Sputum Specimens for Tuberculosis Culture

    Get PDF
    This paper provides a proposal model for a medical device that can prepare samples for the purpose of  tuberculosis diagnosis using sputum specimens. Conventional methods contain hazards because of the seriousness of the disease and  persons infection probability in the laboratory as well as the time spended to prepare each sample individually. The proposed model has a robot arm operates in a completely closed environment  to prepare all samples at once, which reduces the total time of the process. All operations controlled by the Programmable Logic Controller (PLC).

    Interference-Detection Module in a Digital Radar Receiver

    Get PDF
    A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems

    Convergent evolution of sodium ion selectivity in metazoan neuronal signaling

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 2 (2012): 242–248, doi:10.1016/j.celrep.2012.06.016.Ion selectivity of metazoan voltage-gated Na+ channels is critical for neuronal signaling and has long been attributed to a ring of four conserved amino acids that constitute the ion selectivity filter (SF) at the channel pore. Yet, in addition to channels with a preference for Ca2+ ions, the expression and characterization of Na+ channel homologs from the sea anemone Nematostella vectensis, a member of the early-branching metazoan phylum Cnidaria, revealed a sodium-selective channel bearing a noncanonical SF. Mutagenesis and physiological assays suggest that pore elements additional to the SF determine the preference for Na+ in this channel. Phylogenetic analysis assigns the Nematostella Na+-selective channel to a channel group unique to Cnidaria, which diverged >540 million years ago from Ca2+-conducting Na+ channel homologs. The identification of Cnidarian Na+-selective ion channels distinct from the channels of bilaterian animals indicates that selectivity for Na+ in neuronal signaling emerged independently in these two animal lineages.This study was supported by a research grant from the Austrian National Science Foundation (FWF P 21108-B17) to U.T., and by a United States-Israel Binational Agricultural Research and Development Grant (IS-4313-10) and an Israeli Science Foundation grant (107/08) to M.G

    Scatterometer-Calibrated Stability Verification Method

    Get PDF
    The requirement for scatterometer-combined transmit-receive gain variation knowledge is typically addressed by sampling a portion of the transmit signal, attenuating it with a known-stable attenuation, and coupling it into the receiver chain. This way, the gain variations of the transmit and receive chains are represented by this loop-back calibration signal, and can be subtracted from the received remote radar echo. Certain challenges are presented by this process, such as transmit and receive components that are outside of this loop-back path and are not included in this calibration, as well as the impracticality for measuring the transmit and receive chains stability and post fabrication separately, without the resulting measurement errors from the test set up exceeding the requirement for the flight instrument. To cover the RF stability design challenge, the portions of the scatterometer that are not calibrated by the loop-back, (e.g., attenuators, switches, diplexers, couplers, and coaxial cables) are tightly thermally controlled, and have been characterized over temperature to contribute less than 0.05 dB of calibration error over worst-case thermal variation. To address the verification challenge, including the components that are not calibrated by the loop-back, a stable fiber optic delay line (FODL) was used to delay the transmitted pulse, and to route it into the receiver. In this way, the internal loopback signal amplitude variations can be compared to the full transmit/receive external path, while the flight hardware is in the worst-case thermal environment. The practical delay for implementing the FODL is 100 s. The scatterometer pulse width is 1 ms so a test mode was incorporated early in the design phase to scale the 1 ms pulse at 100-Hz pulse repetition interval (PRI), by a factor of 18, to be a 55 s pulse with 556 s PRI. This scaling maintains the duty cycle, thus maintaining a representative thermal state for the RF components. The FODL consists of an RF-modulated fiber-optic transmitter, 20 km SMF- 28 standard single-mode fiber, and a photodetector. Thermoelectric cooling and insulating packaging are used to achieve high thermal stability of the FODL components. The chassis was insulated with 1-in. (.2.5-cm) thermal isolation foam. Nylon rods support the Micarta plate, onto which are mounted four 5-km fiber spool boxes. A copper plate heat sink was mounted on top of the fiber boxes (with thermal grease layer) and screwed onto the thermoelectric cooler plate. Another thermal isolation layer in the middle separates the fiberoptics chamber from the RF electronics components, which are also mounted on a copper plate that is screwed onto another thermoelectric cooler. The scatterometer subsystem fs overall stability was successfully verified to be calibratable to within 0.1 dB error in thermal vacuum (TVAC) testing with the fiber-optic delay line, while the scatterometer temperature was ramped from 10 to 30 C, which is a much larger temperature range than the worst-case expected seasonal variations

    Management of Pulmonary Hemorrhage Complicating Pulmonary Thromboendarterectomy

    Get PDF
    Airway management during pulmonary thromboendarterectomy (PTE) can prove challenging, especially in the face of unexpected intraoperative pulmonary hemorrhage. Utilization of proper airway equipment on induction is crucial for the successful management of intraoperative pulmonary hemorrhage. Our case series describes the preoperative risk factors that can lead to intraoperative pulmonary hemorrhage, the preinduction airway equipment considerations for PTE, and the intraoperative management of pulmonary hemorrhage. We summarize the lessons learned at our institution from four cases of post perfusion pulmonary hemorrhage

    De Novo Mutations in SIK1 Cause a Spectrum of Developmental Epilepsies

    Get PDF
    Developmental epilepsies are age-dependent seizure disorders for which genetic causes have been increasingly identified. Here we report six unrelated individuals with mutations in salt-inducible kinase 1 (SIK1) in a series of 101 persons with early myoclonic encephalopathy, Ohtahara syndrome, and infantile spasms. Individuals with SIK1 mutations had short survival in cases with neonatal epilepsy onset, and an autism plus developmental syndrome after infantile spasms in others. All six mutations occurred outside the kinase domain of SIK1 and each of the mutants displayed autophosphorylation and kinase activity toward HDAC5. Three mutations generated truncated forms of SIK1 that were resistant to degradation and also showed changes in sub-cellular localization compared to wild-type SIK1. We also report the human neuropathologic examination of SIK1-related developmental epilepsy, with normal neuronal morphology and lamination but abnormal SIK1 protein cellular localization. Therefore, these results expand the genetic etiologies of developmental epilepsies by demonstrating SIK1 mutations as a cause of severe developmental epilepsy

    The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Get PDF
    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days
    corecore