1,546 research outputs found
Report of Objective Clinical Responses of Cancer Patients to Pharmaceutical-grade Synthetic Cannabidiol.
BACKGROUND/AIM: Cannabinoids are widely used in the management of pain, nausea and cachexia in cancer patients. However, there has been no objective clinical evidence of any anticancer activity yet. The aim of this study was to assess the effects of pharmaceutical-grade synthetic cannabidiol on a range of cancer patients. PATIENTS AND METHODS: We analysed the data routinely collected, as part of our treatment program, in 119 cancer patients over a four-year period. RESULTS: Clinical responses were seen in 92% of the 119 cases with solid tumours including a reduction in circulating tumour cells in many cases and in other cases, a reduction in tumour size, as shown by repeat scans. No side-effects of any kind were observed when using pharmaceutical grade synthetic cannabidiol. CONCLUSION: Pharmaceutical-grade synthetic cannabidiol is a candidate for treating breast cancer and glioma patients
Enhanced effect of checkpoint inhibitors when given after or together with IMM-101: significant responses in four advanced melanoma patients with no additional major toxicity
Background
The use of checkpoint inhibitors (ipilimumab, pembrolizumab, nivolumab) has revolutionised the treatment of metastatic melanoma. However still more than the half the patients do not respond to single-agent immunotherapy. This has led to the development of combining these agents in an attempt to enhance the anti-cancer activity. More than 300 different studies with 15 different drug doses are currently ongoing. Combining different checkpoint inhibitors (CPIs) does indeed lead to an increase in response rate, but this is associated with significant toxicity. IMM-101 is a heat killed Mycobacterium preparation which induces marked immune modulation and little systemic toxicity. It has been reported as having activity in melanoma as single agent and in pancreatic cancer in combination with gemcitabine, the latter in a randomised study.
Methods
Here we report the effect of adding CPIs to 3 patients who had previously been on IMM-101, either as a trial or a named patient programme and a patient who received the IMM-101 together with nivolumab.
Results
All 4 patients had rapid and very good responses, three of them maintained over 18 months with no significant additional toxicity.
Conclusions
The rapid and complete clinical responses seen in these patients may suggest that IMM-101 is activating a complementary pathway which is synergistic with CPI treatment
Recommended from our members
Biovacc-19: A Candidate Vaccine for Covid-19 (SARS-CoV-2) Developed from Analysis of its General Method of Action for Infectivity
This study presents the background, rationale and method of action of Biovacc-19, a candidate vaccine for corona virus disease 2019 (Covid-19), now in advanced preclinical development, which has already passed the first acute toxicity testing. Unlike conventionally developed vaccines, Biovacc-19’s method of operation is upon nonhuman-like (NHL) epitopes in 21.6% of the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)’s spike protein, which displays distinct distributed charge including the presence of a charged furin-like cleavage site. The logic of the design of the vaccine is explained, which starts with empirical analysis of the aetiology of SARS-CoV-2. Mistaken assumptions about SARS-CoV-2’s aetiology risk creating ineffective or actively harmful vaccines, including the risk of antibody-dependent enhancement. Such problems in vaccine design are illustrated from past experience in the human immunodeficiency viruses domain. We propose that the dual effect general method of action of this chimeric virus’s spike, including receptor binding domain, includes membrane components other than the angiotensin-converting enzyme 2 receptor, which explains clinical evidence of its infectivity and pathogenicity. We show the nonreceptor dependent phagocytic general method of action to be specifically related to cumulative charge from insertions placed on the SARS-CoV-2 spike surface in positions to bind efficiently by salt bridge formations; and from blasting the spike we display the NHL epitopes from which Biovacc-19 has been down-selected
Inverse Magnetoresistance of Molecular Junctions
We present calculations of spin-dependent electron transport through single
organic molecules bridging pairs of iron nanocontacts. We predict the
magnetoresistance of these systems to switch from positive to negative with
increasing applied bias for both conducting and insulating molecules. This
novel inverse magnetoresistance phenomenon is robust, does not depend on the
presence of impurities, and is unique to molecular and atomic nanoscale
magnetic junctions. Its physical origin is identified and its relevance to
experiment and to potential technological applications is discussed.Comment: 5 pages, 3 figures; published version Phys. Rev.
The trauma memory quality questionnaire:Preliminary development and validation of a measure of trauma memory characteristics for children and adolescents
It has been suggested that post-traumatic stress is related to the nature of an individual's trauma memories. While this hypothesis has received support in adults, few studies have examined this in children and adolescents. This article describes the development and validation of a measure of the nature of children's trauma memories, the Trauma Memory Quality Questionnaire (TMQQ), that might test this hypothesis and be of clinical use. The measure was standardised in two samples, a cross-sectional sample of non-clinic referred secondary school pupils (n=254), and a sample participating in a prospective study of children and adolescents who had attended a hospital Accident and Emergency department following an assault or a road traffic accident (n=106). The TMQQ was found to possess good internal consistency, criterion validity, and construct validity, but test-retest reliability has yet to be established
Theoretical Study of Spin-dependent Electron Transport in Atomic Fe Nanocontacts
We present theoretical predictions of spintronic transport phenomena that
should be observable in ferromagnetic Fe nanocontacts bridged by chains of Fe
atoms. We develop appropriate model Hamiltonians based on semi-empirical
considerations and the known electronic structure of bulk Fe derived from ab
initio density functional calculations. Our model is shown to provide a
satisfactory description of the surface properties of Fe nano-clusters as well
as bulk properties. Lippmann-Schwinger and Green's function techniques are used
together with Landauer theory to predict the current, magneto-resistance, and
spin polarization of the current in Fe nanocontacts bridged by atomic chains
under applied bias. Unusual device characteristics are predicted including
negative magneto-resistance and spin polarization of the current, as well as
spin polarization of the current for anti-parallel magnetization of the Fe
nanocontacts under moderate applied bias. We explore the effects that
stretching the atomic chain has on the magneto-resistance and spin polarization
and predict a cross-over regime in which the spin polarization of the current
for parallel magnetization of the contacts switches from negative to positive.
We find resonant transmission due to dangling bond formation on tip atoms as
the chain is stretched through its breaking point to play an important role in
spin-dependent transport in this regime. The physical mechanisms underlying the
predicted phenomena are discussed.Comment: 13 pages, 6 figures, Accepted for publication in Physical Review
- …