4,603 research outputs found
The moment index of minima (II)
The moment index of a nonnegative random variable X has the property that the moment index of the minimum of two independent r.v.s X and Y is greater than or equal to the sum of the moment indices of X and Y. We characterize conditions under which equality holds for a given r.v. X and every independent nonnegative r.v. Y, and discuss extensions to related r.v.s and their distributions
Dynamics of Rumor Spreading in Complex Networks
We derive the mean-field equations characterizing the dynamics of a rumor
process that takes place on top of complex heterogeneous networks. These
equations are solved numerically by means of a stochastic approach. First, we
present analytical and Monte Carlo calculations for homogeneous networks and
compare the results with those obtained by the numerical method. Then, we study
the spreading process in detail for random scale-free networks. The time
profiles for several quantities are numerically computed, which allow us to
distinguish among different variants of rumor spreading algorithms. Our
conclusions are directed to possible applications in replicated database
maintenance, peer to peer communication networks and social spreading
phenomena.Comment: Final version to appear in PR
Spreading of Persistent Infections in Heterogeneous Populations
Up to now, the effects of having heterogeneous networks of contacts have been
studied mostly for diseases which are not persistent in time, i.e., for
diseases where the infectious period can be considered very small compared to
the lifetime of an individual. Moreover, all these previous results have been
obtained for closed populations, where the number of individuals does not
change during the whole duration of the epidemics. Here, we go one step further
and analyze, both analytically and numerically, a radically different kind of
diseases: those that are persistent and can last for an individual's lifetime.
To be more specific, we particularize to the case of Tuberculosis' (TB)
infection dynamics, where the infection remains latent for a period of time
before showing up and spreading to other individuals. We introduce an
epidemiological model for TB-like persistent infections taking into account the
heterogeneity inherent to the population structure. This sort of dynamics
introduces new analytical and numerical challenges that we are able to sort
out. Our results show that also for persistent diseases the epidemic threshold
depends on the ratio of the first two moments of the degree distribution so
that it goes to zero in a class of scale-free networks when the system
approaches the thermodynamic limit.Comment: 12 pages and 2 figures. Revtex format. Submitted for publication
On a method to calculate conductance by means of the Wigner function: two critical tests
We have implemented the linear response approximation of a method proposed to
compute the electron transport through correlated molecules based on the
time-independent Wigner function [P. Delaney and J. C. Greer, \prl {\bf 93},
36805 (2004)]. The results thus obtained for the zero-bias conductance through
quantum dot both without and with correlations demonstrate that this method is
either quantitatively nor qualitatively able to provide a correct physical
escription of the electric transport through nanosystems. We present an
analysis indicating that the failure is due to the manner of imposing the
boundary conditions, and that it cannot be simply remedied.Comment: 22 pages, 7 figur
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Two-point correlation properties of stochastic "cloud processes''
We study how the two-point density correlation properties of a point particle
distribution are modified when each particle is divided, by a stochastic
process, into an equal number of identical "daughter" particles. We consider
generically that there may be non-trivial correlations in the displacement
fields describing the positions of the different daughters of the same "mother"
particle, and then treat separately the cases in which there are, or are not,
correlations also between the displacements of daughters belonging to different
mothers. For both cases exact formulae are derived relating the structure
factor (power spectrum) of the daughter distribution to that of the mother.
These results can be considered as a generalization of the analogous equations
obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement
fields applied to particle distributions. An application of the present results
is that they give explicit algorithms for generating, starting from regular
lattice arrays, stochastic particle distributions with an arbitrarily high
degree of large-scale uniformity.Comment: 14 pages, 3 figure
Global Versus Local Computations: Fast Computing with Identifiers
This paper studies what can be computed by using probabilistic local
interactions with agents with a very restricted power in polylogarithmic
parallel time. It is known that if agents are only finite state (corresponding
to the Population Protocol model by Angluin et al.), then only semilinear
predicates over the global input can be computed. In fact, if the population
starts with a unique leader, these predicates can even be computed in a
polylogarithmic parallel time. If identifiers are added (corresponding to the
Community Protocol model by Guerraoui and Ruppert), then more global predicates
over the input multiset can be computed. Local predicates over the input sorted
according to the identifiers can also be computed, as long as the identifiers
are ordered. The time of some of those predicates might require exponential
parallel time. In this paper, we consider what can be computed with Community
Protocol in a polylogarithmic number of parallel interactions. We introduce the
class CPPL corresponding to protocols that use , for some k,
expected interactions to compute their predicates, or equivalently a
polylogarithmic number of parallel expected interactions. We provide some
computable protocols, some boundaries of the class, using the fact that the
population can compute its size. We also prove two impossibility results
providing some arguments showing that local computations are no longer easy:
the population does not have the time to compare a linear number of consecutive
identifiers. The Linearly Local languages, such that the rational language
, are not computable.Comment: Long version of SSS 2016 publication, appendixed version of SIROCCO
201
Don't break a leg: Running birds from quail to ostrich prioritise leg safety and economy in uneven terrain
Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics
- …
