301 research outputs found
Cancer: repositioned to kill stem cells
Chemotherapy-resistant cancer stem cells make it hard to cure many forms of the disease. Repositioning an existing drug to tackle this problem could significantly improve treatment for one form of leukaemia
A screen to identify drug resistant variants to target-directed anti-cancer agents
The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia (CML)-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair
Recommended from our members
Epigenetic memory in induced pluripotent stem cells.
Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an 'epigenetic memory' of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment
Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability
Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening
A BCR-ABL Mutant Lacking Direct Binding Sites for the GRB2, CBL and CRKL Adapter Proteins Fails to Induce Leukemia in Mice
The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62DOK, and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62DOK and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites
Combination of Two but Not Three Current Targeted Drugs Can Improve Therapy of Chronic Myeloid Leukemia
Chronic myeloid leukemia (CML) is a cancer of the hematopoietic system and has been treated with the drug Imatinib relatively successfully. Drug resistance, acquired by mutations, is an obstacle to success. Two additional drugs are now considered and could be combined with Imatinib to prevent resistance, Dasatinib and Nilotinib. While most mutations conferring resistance to one drug do not confer resistance to the other drugs, there is one mutation (T315I) that induces resistance against all three drugs. Using computational methods, the combination of two drugs is found to increase the probability of treatment success despite this cross-resistance. Combining more than two drugs, however, does not provide further advantages. We also explore possible combination therapies using drugs currently under development. We conclude that among the targeted drugs currently available for the treamtent of CML, only the two most effective ones should be used in combination for the prevention of drug resistance
Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction
Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear.Here, we generated iPS cells from PDGFRα+ Sca-1+ (PαS) adult mouse mesenchymal stem cells (MSCs) and PDGFRα⁻ Sca-1⁻ osteo-progenitors (OP cells), and compared the induction efficiency and quality of individual iPS clones. MSCs had a higher reprogramming efficiency compared with OP cells and Tail Tip Fibroblasts (TTFs). The iPS cells induced from MSCs by Oct3/4, Sox2, and Klf4 appeared to be the closest equivalent to ES cells by DNA microarray gene profile and germline-transmission efficiency.Our findings suggest that a purified source of undifferentiated cells from adult tissue can produce high-quality iPS cells. In this context, prospectively enriched MSCs are a promising candidate for the efficient generation of high-quality iPS cells
Stem cells and repair of lung injuries
Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung
Differential regulation of myeloid leukemias by the bone marrow microenvironment
Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSC) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM)1, and may be the cause of relapse following chemotherapy.2 Targeting the niche is a novel strategy to eliminate persistent and drug-resistant LSC. CD443,4 and IL-65 have been implicated previously in the LSC niche. Transforming growth factor (TGF)-β1 is released during bone remodeling6 and plays a role in maintenance of CML LSCs7, but a role for TGF-β1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor8,9 attenuates BCR-ABL1-induced CML-like myeloproliferative neoplasia (MPN)10 but enhances MLL-AF9-induced AML11 in mouse transplantation models, possibly through opposing effects of increased TGF-β1 on the respective LSC. PTH treatment caused a 15-fold decrease in LSCs in wildtype mice with CML-like MPN, and reduced engraftment of immune deficient mice with primary human CML cells. These results demonstrate that LSC niches in chronic and acute myeloid leukemias are distinct, and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSC, a prerequisite for the cure of CML
- …