159 research outputs found

    Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies

    Get PDF
    We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation

    Aberrant Cx43 expression and mislocalization in metastatic human melanomas

    Get PDF
    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures

    Interrogation of carboxy-terminus localized GJA1 variants associated with erythrokeratodermia variabilis et progressiva

    Get PDF
    Although inherited GJA1 (encoding Cx43) gene mutations most often lead to oculodentodig-ital dysplasia and related disorders, four variants have been linked to erythrokeratodermia variabilis et progressiva (EKVP), a skin disorder characterized by erythematous and hyperkeratotic lesions. While two autosomal-dominant EKVP-linked GJA1 mutations have been shown to lead to augmented hemichannels, the consequence(s) of keratinocytes harboring a de novo P283L variant alone or in combination with a de novo T290N variant remain unknown. Interestingly, these variants reside within or adjacent to a carboxy terminus polypeptide motif that has been shown to be important in regulating the internalization and degradation of Cx43. Cx43-rich rat epidermal keratinocytes (REKs) or Cx43-ablated REKs engineered to express fluorescent protein-tagged P283L and/or T290N variants formed prototypical gap junctions at cell–cell interfaces similar to wildtype Cx43. Dye coupling and dye uptake studies further revealed that each variant or a combination of both variants formed functional gap junction channels, with no evidence of augmented hemichannel function or induction of cell death. Tracking the fate of EKVP-associated variants in the presence of the protein secretion blocker brefeldin A, or an inhibitor of protein synthesis cycloheximide, revealed that P283L or the combination of P283L and T290N variants either significantly extended Cx43 residency on the cell surface of keratinocytes or delayed its degradation. However, caution is needed in concluding that this modest change in the Cx43 life cycle is sufficient to cause EKVP, or whether an additional underlying mechanism or another unidentified gene mutation is contributing to the pathogenesis found in patients. This question will be resolved if further patients are identified where whole exome sequencing reveals a Cx43 P283L variant alone or, in combination with a T290N variant, co-segregates with EKVP across several family generations

    Mice harbouring an oculodentodigital dysplasia-linked Cx43 G60S mutation have severe hearing loss

    Get PDF
    Given the importance of connexin43 (Cx43, encoded by GJA1) function in the central nervous system and sensory organ processing, we proposed that it would also be crucial in auditory function. To that end, hearing was examined in two mouse models of oculodentodigital dysplasia that globally express GJA1 mutations resulting in mild or severe loss of Cx43 function. Although Cx43(I130T/+) mutant mice, with similar to 50% Cx43 channel function, did not have any hearing loss, Cx43(G60S/+) mutant mice, with similar to 20% Cx43 channel function, had severe hearing loss. There was no evidence of inner ear sensory hair cell loss, suggesting that the mechanism for Cx43-linked hearing loss lies downstream in the auditory pathway. Since evidence suggests that Cx26 function is essential for hearing and may be protective against noise-induced hearing loss, we challenged Cx43(I130T/+) mice with a loud noise and found that they had a similar susceptibility to noise-induced hearing loss to that found in controls, suggesting that decreased Cx43 function does not sensitize the mice for environmentally induced hearing loss. Taken together, this study suggests that Cx43 plays an important role in baseline hearing and is essential for auditory processing. This article has an associated First Person interview with the first author of the paper

    Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora

    Get PDF
    © 2016 Anatomical Society. Pannexins form single-membrane channels that allow passage of small molecules between the intracellular and extracellular compartments. Of the three pannexin family members, Pannexin3 (Panx3) is the least studied but is highly expressed in skeletal tissues and is thought to play a role in the regulation of chondrocyte and osteoblast proliferation and differentiation. The purpose of our study is to closely examine the in vivo effects of Panx3 ablation on long bone morphology using micro-computed tomography. Using Panx3 knockout (KO) and wildtype (WT) adult mice, we measured and compared aspects of phenotypic shape, bone mineral density (BMD), cross-sectional geometric properties of right femora and humeri, and lean mass. We found that KO mice have absolutely and relatively shorter diaphyseal shafts compared with WT mice, and relatively larger areas of muscle attachment sites. No differences in BMD or lean mass were found between WT and KO mice. Interestingly, KO mice had more robust femora and humeri compared with WT mice when assessed in cross-section at the midshaft. Our results clearly show that Panx3 ablation produces phenotypic effects in mouse femora and humeri, and support the premise that Panx3 has a role in regulating long bone growth and development

    Single-cell dynamics of pannexin-1-facilitated programmed ATP loss during apoptosis

    Get PDF
    死にゆく細胞のATP濃度変化を詳細に可視化することに成功 --積極的にATP濃度を下げる因子を明らかに--. 京都大学プレスリリース. 2020-10-22.ATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hr. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a ‘programmed’ process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP
    corecore