818 research outputs found

    High field level crossing studies on spin dimers in the low dimensional quantum spin system Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T=Ni,Co,Fe,Mn

    Full text link
    In this paper we demonstrate the application of high magnetic fields to study the magnetic properties of low dimensional spin systems. We present a case study on the series of 2-leg spin-ladder compounds Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T = Ni, Co, Fe and Mn. In all compounds the transition metal is in the T2+T^{2+} high spin configuation. The localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The magnetic properties were examined experimentally by magnetic susceptibility, pulsed high field magnetization and specific heat measurements. The data are analysed using a spin hamiltonian description. Although the transition metal ions form structurally a 2-leg ladder, an isolated dimer model consistently describes the observations very well. This behaviour can be understood in terms of the different coordination and superexchange angles of the oxalate ligands along the rungs and legs of the 2-leg spin ladder. All compounds exhibit magnetic field driven ground state changes which at very low temperatures lead to a multistep behaviour in the magnetization curves. In the Co and Fe compounds a strong axial anisotropy induced by the orbital magnetism leads to a nearly degenerate ground state and a strongly reduced critical field. We find a monotonous decrease of the intradimer magnetic exchange if the spin quantum number is increased

    Fractionated 131I anti-CEA radioimmunotherapy: effects on xenograft tumour growth and haematological toxicity in mice

    Get PDF
    Dose fractionation has been proposed as a method to improve the therapeutic ratio of radioimmunotherapy (RIT). This study compared a single administration of 7.4 MBq 131I-anti-CEA antibody given on day 1 with the same total activity given as fractionated treatment: 3.7 MBq (days 1 and 3), 2.4 MBq (days 1, 3, and 5) or 1.8 MBq (days 1, 3, 5, and 8). Studies in nude mice, bearing the human colorectal xenograft LS174T, showed that increasing the fractionation significantly reduced the efficacy of therapy. Fractionation was associated with a decrease in systemic toxicity as assessed by weight, but did not lead to any significant decrease in acute haematological toxicity. Similarly, no significant decrease in marrow toxicity, as assessed by colony-forming unit assays for granulocytes and macrophages (CFUgm), was seen. However, there was a significant depression of CFUgm counts when all treated animals were compared with untreated controls, suggesting that treatment did suppress marrow function. In conclusion, in this tumour model system, fractionated RIT causes less systemic toxicity, but is also less effective at treating tumours

    Timescales of Massive Human Entrainment

    Get PDF
    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment - as expressed by the content and patterns of hundreds of thousands of messages on Twitter - during the 2012 US presidential debates. By time locking these data sources, we quantify the impact of the unfolding debate on human attention. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient moments in the debate: Mentions in social media start within 5-10 seconds after the moment; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version revised according to peer reviewers' comments: more detailed explanation of the methods, and grounding of the hypothese

    Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex

    Get PDF
    Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated

    Combining remote sensing and household level data for regional scale analysis of land cover change in the Brazilian Amazon

    Get PDF
    Land cover change in the Brazilian Amazon depends on the spatial variability of political, socioeconomic and biophysical factors, as well as on the land use history and its actors. A regional scale analysis was made in Rondônia State to identify possible differences in land cover change connected to spatial policies of land occupation, size and year of establishment of properties, accessibility measures and soil fertility. The analysis was made based on remote sensing data and household level data gathered with a questionnaire. Both types of analyses indicate that the highest level of total deforestation is found inside agrarian projects, especially in those established more than 20 years ago. Even though deforestation rates are similar inside and outside official settlements, inside agrarian projects forest depletion can exceed 50% at the property level within 10–14 years after establishment. The data indicate that both small-scale and medium to large-scale farmers contribute to deforestation processes in Rondônia State encouraged by spatial policies of land occupation, which provide better accessibility to forest fringes where soil fertility and forest resources are important determinants of location choic

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    Get PDF
    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR)

    Activation in a Frontoparietal Cortical Network Underlies Individual Differences in the Performance of an Embedded Figures Task

    Get PDF
    The Embedded Figures Test (EFT) requires observers to search for a simple geometric shape hidden inside a more complex figure. Surprisingly, performance in the EFT is negatively correlated with susceptibility to illusions of spatial orientation, such as the Roelofs effect. Using fMRI, we previously demonstrated that regions in parietal cortex are involved in the contextual processing associated with the Roelofs task. In the present study, we found that similar parietal regions (superior parietal cortex and precuneus) were more active during the EFT than during a simple matching task. Importantly, these parietal activations overlapped with regions found to be involved during contextual processing in the Roelofs illusion. Additional parietal and frontal areas, in the right hemisphere, showed strong correlations between brain activity and behavioral performance during the search task. We propose that the posterior parietal regions are necessary for processing contextual information across many different, but related visuospatial tasks, with additional parietal and frontal regions serving to coordinate this processing in participants proficient in the task
    corecore