34 research outputs found
Recommended from our members
Juvenile root vigour improves phosphorus use efficiency of potato
Aims
Potato (Solanum tuberosum L.) has a large phosphorus (P)-fertiliser requirement. This is thought to be due to its inability to acquire P effectively from the soil. This work tested the hypothesis that early proliferation of its root system would enhance P acquisition, accelerate canopy development, and enable greater yields.
Methods
Six years of field experiments characterised the relationships between (1) leaf P concentration ([P]leaf), tuber yield, and tuber P concentration ([P]tuber) among 27 Tuberosum, 35 Phureja and 4 Diploid Hybrid genotypes and (2) juvenile root vigour, P acquisition and tuber yield among eight Tuberosum genotypes selected for contrasting responses to P-fertiliser.
Results
Substantial genetic variation was observed in tuber yield, [P]leaf and [P]tuber. There was a strong positive relationship between tuber yields and P acquisition among genotypes, whether grown with or without P-fertiliser. Juvenile root vigour was correlated with accelerated canopy development and both greater P acquisition and tuber biomass accumulation early in the season. However, the latter relationships became weaker during the season.
Conclusions
Increased juvenile root vigour accelerated P acquisition and initial canopy cover and, thereby, increased tuber yields. Juvenile root vigour is a heritable trait and can be selected to improve P-fertiliser use efficiency of potato
A Novel Secretion Pathway of Salmonella enterica Acts as an Antivirulence Modulator during Salmonellosis
Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion pathway. In Salmonella enterica serovar Typhimurium, this novel secretion pathway is encoded by STM1669 and STM1668, designated zirT and zirS, respectively. We show that ZirT is localized to the bacterial outer membrane, expected to adopt a compact β-barrel conformation, and functions as a translocator for ZirS. ZirS is an exoprotein, which is secreted into the extracellular environment in a ZirT-dependent manner. The ZirTS secretion pathway was found to share several important features with two-partner secretion (TPS) systems and members of the intimin/invasin family of adhesions. We show that zirTS expression is affected by zinc; and that in vivo, induction of zirT occurs distinctively in Salmonella colonizing the small intestine, but not in systemic sites. Additionally, strong expression of zirT takes place in Salmonella shed in fecal pellets during acute and persistent infections of mice. Inactivation of ZirTS results in a hypervirulence phenotype of Salmonella during oral infection of mice. Cumulatively, these results indicate that the ZirTS pathway plays a unique role as an antivirulence modulator during systemic disease and is involved in fine-tuning a host–pathogen balance during salmonellosis
Effects of season and postharvest storage on the carotenoid content of Solanum phureja potato tubers
Recommended from our members
Relationships between yield and mineral concentrations in potato tubers
There is concern that modern cultivars and/or agronomic practices have resulted in reduced concentrations of mineral elements essential to human nutrition in edible crops. Increased yields are often associated with reduced concentrations of mineral elements in produce, and a number of recent studies have indicated that, when grown under identical conditions, the concentrations of several mineral elements are lower in genotypes yielding more grain or shoot biomass than in older, lower-yielding genotypes. Potato is a significant crop, grown worldwide, yet few studies have investigated whether increasing yields, through agronomy or breeding, affects the concentrations of mineral elements in tubers. This article examines the hypothesis that increasing yields, either by the application of mineral fertilizers and/or by growing higher-yielding varieties, leads to decreased concentrations of mineral elements in tubers. It reports that the application of fertilizers influences tuber elemental composition in a complex manner, presumably as a consequence of soil chemistry and interactions between mineral elements within the plant, that considerable variation exists between potato genotypes in the concentrations of mineral elements in their tubers, and that, like in other crops, higher-yielding genotypes occasionally have lower concentrations of some mineral elements in their edible tissues than lower-yielding genotypes
Improving breeding efficiency in potato using molecular and quantitative genetics
Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm