6 research outputs found

    Safety evaluation of directly observed treatment short course (DOTS) regimen in a tertiary care hospital, Pune

    Get PDF
    Background: Directly observed treatment short course (DOTS) is a cornerstone of Revised National Tuberculosis Control Program of India. Adverse drug reactions (ADRs) induced by this therapy is common and it causes significant morbidity and mortality. Hence, the present study was undertaken to determine the incidence and pattern of ADRs and to assess causality and severity.Methods: We conducted prospective, observational study at DOTS center of tertiary care hospital, Pune. 150 pulmonary tuberculosis patients undergoing DOTS therapy were enrolled. They were monitored weekly in an intensive phase and monthly in the continuation phase. The suspected ADRs were recorded and assessed for causality and severity by standard algorithms.Results: Incidence of ADRs due to DOTS was 19.33% & total 35 ADRs had occurred in our study. Gastrointestinal intolerance, arthralgia & itching with or without rashes were most common ADRs (incidence rates: 12.67%, 2.67% and 2.67%, respectively). On evaluation of causality by Naranjo algorithm, majority of ADRs 91.43% were “possible.” As per WHO- Uppsala Monitoring Center scale, majority of ADRs 91.43% were “possible.” As per Modified Hartwig and Siegel scale, majority of ADRs were “moderate” (48.57%) but 8.57% were “severe.” Female gender was found to be a significant risk factor for developing ADRs (odds ratio: 3.08, 95% confidence interval: 1.33-7.12. 3.33%). ADRs & hepatotoxicity was major reason for defaulting from DOTS (60%).Conclusion: ADRs induced by DOTS are common and there is need of incorporating pharmacovigilance system for this vital public health program. Counseling of patients for timely prevention, detection, and management of ADRs will help in minimizing the further occurrence of ADRs

    Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications

    No full text
    Climate models project that many terrestrial ecosystems will become drier over the course of this century, leading to a drastic increase in the global extent of arid soils. In order to decrease the effects of climate change on global food security, it is crucial to understand the arid environment and the constraints associated with arid soils. Although the effects of aridity on aboveground organisms have been studied extensively, our understanding of how it affects soil processes and nutrient cycling is lacking. One of the primary agricultural constraints, particularly in arid locations, is water scarcity, due to which arid soils are characterized by sparse vegetation cover, low soil organic carbon, poor soil structure, reduced soil biodiversity, and a high rate of soil erosion via wind. Increased aridity will limit the availability of essential plant nutrients and crop growth, and subsequently pose serious threats to key ecological processes and services. The increasing rate of soil salinization is another major environmental hazard that further limits the agricultural potential of arid soils. These soil constraints can be ameliorated and the crop yields increased through case-specific optimization of irrigation and drainage management, enhancing the native beneficial soil microbes, and combinations of soil amendments, conditioners, and residue management. This review explores technologies to ameliorate soil constraints and increase yields to maintain crop output in arid soils

    Not Available

    No full text
    Not AvailableSoil organic matter dynamics in terrestrial ecosystems are controlled by complex interactions between various factors such as climate, soil, and agricultural management practices. We utilized a process-based crop model, APSIM, to simulate long-term soil organic carbon (SOC) dynamics for a soybean-wheat cropping system under nitrogen (N) and farmyard manure management (FYM) practices for a 43-year old experimental dataset in India. The APSIM was parameterized and validated to predict grain yield and SOC stock. The validated model was then used to evaluate the impacts of different management practices on SOC dynamics in the top 30 cm of soil through scenario modeling. The results of the APSIM simulations demonstrated that improved N and FYM management practices had great potential to increase SOC sequestration in these Vertisols. The equilibrium SOC concentration under different N management practices increased with a higher N application rate, with the integrated application of N with FYM showing the maximum rate. The optimum N (Nopt) rate for maximum SOC sequestration was estimated to be 155 kg ha−1 for wheat in the studied Vertisol and the time to reach steady-state of the site was 104 years. The Nopt increased SOC by about 28.6% over the initial concentration. We found that the APSIM was robust in predicting long-term changes in SOC stock (Index of agreement = 0.79 and root mean square error = 3.33 Mg ha−1, R2 = 0.92, mean bias error = −1.08) for a Vertisol soil of central India, in this case under a soybean-wheat cropping system. The study results highlighted that balanced fertilization is the key to sustaining SOC stock in the long-term for Vertisols.Not Availabl

    Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling

    No full text
    Soil organic matter dynamics in terrestrial ecosystems are controlled by complex interactions between various factors such as climate, soil, and agricultural management practices. We utilized a process-based crop model, APSIM, to simulate long-term soil organic carbon (SOC) dynamics for a soybean-wheat cropping system under nitrogen (N) and farmyard manure management (FYM) practices for a 43-year old experimental dataset in India. The APSIM was parameterized and validated to predict grain yield and SOC stock. The validated model was then used to evaluate the impacts of different management practices on SOC dynamics in the top 30 cm of soil through scenario modeling. The results of the APSIM simulations demonstrated that improved N and FYM management practices had great potential to increase SOC sequestration in these Vertisols. The equilibrium SOC concentration under different N management practices increased with a higher N application rate, with the integrated application of N with FYM showing the maximum rate. The optimum N (N) rate for maximum SOC sequestration was estimated to be 155 kg ha for wheat in the studied Vertisol and the time to reach steady-state of the site was 104 years. The N increased SOC by about 28.6% over the initial concentration. We found that the APSIM was robust in predicting long-term changes in SOC stock (Index of agreement = 0.79 and root mean square error = 3.33 Mg ha, R = 0.92, mean bias error = −1.08) for a Vertisol soil of central India, in this case under a soybean-wheat cropping system. The study results highlighted that balanced fertilization is the key to sustaining SOC stock in the long-term for Vertisols
    corecore