449 research outputs found

    Effect of Thermal Annealing on Boron Diffusion, Micro-structural, Electrical and Magnetic properties of Laser Ablated CoFeB Thin Films

    Full text link
    We report on Boron diffusion and subsequent crystallization of Co40_{40}Fe40_{40}B20_{20} (CoFeB) thin films on SiO2_2/Si(001) substrate using pulsed laser deposition. Secondary ion mass spectroscopy reveals Boron diffusion at the interface in both amorphous and crystalline phase of CoFeB. High-resolution transmission electron microscopy reveals a small fraction of nano-crystallites embedded in the amorphous matrix of CoFeB. However, annealing at 400^\circC results in crystallization of CoFe with \textit{bcc} structure along (110) orientation. As-deposited films are non-metallic in nature with the coercivity (Hc_c) of 5Oe while the films annealed at 400^\circC are metallic with a Hc_c of 135Oe.Comment: 16 pages, 6 figure

    Optimisation of abrasive wear of rice husk reinforced epoxy composite by using response surface methodology

    Get PDF
    Wear is the disintegration or sideways uprooting of a material from its "derivative" and unique position on a solid surface performed by the movement of an alternate surface. The requirement for relative movement between two surfaces and mechanical contact between asperities is a paramount refinement between mechanical wear contrasted with different courses of action with comparative results. The wear analysis is possible by expository procedures like Response Surface Methodology. Response Surface Methodology (RSM) is an accumulation of statistical and mathematical techniques helpful for creating, enhancing, and upgrading methodologies. It additionally has important requisitions in the outline, advancement, and definition of new items, and also in the change of existing item plans. The broadest provisions of RSM are in the modern world, especially in circumstances where several input variables conceivably impact some performance measure or quality characteristic of the product or process

    Fischer–Tropsch Synthesis for Light Olefins from Syngas: A Review of Catalyst Development

    Get PDF
    Light olefins as one the most important building blocks in chemical industry can be produced via Fischer–Tropsch synthesis (FTS) from syngas. FT synthesis conducted at high temperature would lead to light paraffins, carbon dioxide, methane, and C5+ longer chain hydrocarbons. The present work focuses on providing a critical review on the light olefin production using Fischer– Tropsch synthesis. The effects of metals, promoters and supports as the most influential parameters on the catalytic performance of catalysts are discussed meticulously. Fe and Co as the main active metals in FT catalysts are investigated in terms of pore size, crystal size, and crystal phase for obtaining desirable light olefin selectivity. Larger pore size of Fe-based catalysts is suggested to increase olefin selectivity via suppressing 1-olefin readsorption and secondary reactions. Iron carbide as the most probable phase of Fe-based catalysts is proposed for light olefin generation via FTS. Smaller crystal size of Co active metal leads to higher olefin selectivity. Hexagonal close-packed (HCP) structure of Co has higher FTS activity than face-centered cubic (FCC) structure. Transition from Co to Co3C is mainly proposed for formation of light olefins over Co-based catalysts. Moreover, various catalysts’ deactivation routes are reviewed. Additionally, techno-economic assessment of FTS plants in terms of different costs including capital expenditure and minimum fuel selling price are presented based on the most recent literature. Finally, the potential for global environmental impacts associated with FTS plants including atmospheric and toxicological impacts is considered via lifecycle assessment (LCA)

    Characteristic studies on the biochars produced by hydro-thermal and steam gasification of canola hull and canola meal fuel pellets

    Get PDF
    Biochars, based on their production process and biomass precursor, can have a broad range of structural, compositional, chemical, and physical properties. These properties are important for identifying the biochar performance and stability in further applications. Non-food biomass has a great potential to produce biochars. Two inherent agricultural biomasses from Canadian prairies including canola hull and canola meal were used for the production of fuel pellets. This study provides information on the specific features of biochars produced by steam and hydro-thermal gasification of these fuel pellets compared with those of well-known pyrolysis biochars. For steam gasification, the steam to biomass ratio (SBR=0.31, 0.47, and 0.62) and gasification temperature (T=650, 750 and 850 oC) were used as the main process parameters. In contrast, for hydro-thermal (supercritical water) gasification, the effects of gasification temperature (T= 350, 450, 550, and 650 oC) were studied on the biochar properties at a constant pressure, feed concentration and reaction time. Different characterization techniques were used to study the physical, chemical, and structural characteristics of biochar products. Characterization results, for steam-gasified biochars confirmed development of aromatic carbon structure and formation of composite char. XRD spectra for biochars produced through steam gasification showed no retention of biochemical features from the parent precursors in the biochars prepared in different levels of operating conditions. FTIR spectra confirmed the rearrangement of biomass structure at the early stages of steam gasification for all used operating conditions. Elemental analysis and Van Krevelen plot showed that for pellets, the H/C and O/C atomic ratios were in the range of biomass material. However, after gasification, the these atomic ratios for biochars were in the range of them for coal material, especially lignite coal. SEM analysis showed that steam-gasified biochars had much more cracked surface as compared with hydro-thermally prepared biochars. This observation was consistent with the results of porous characteristics for biochars which showed low BET surface area (\u3c11 \u3em2/g) for hydro-thermally produced biochars but it was much larger (\u3e 400 m2/g) for steam-gasified biochars. XRD results for hydro-thermally prepared biochars at 350 oC showed the presence of cellulose I and cellulose II in the material structure, but the related peaks were not observed for the biochar prepared at hydro-thermal gasification temperature of 650 oC. For prepared biochars prepared at the highest temperature of hydro-thermal gasification, Raman analysis showed a large change in ID/IG ratio compared with that for biochar prepared at temperature of 350 oC confirming a drastic structural change in biochar structure. Results from other characterization techniques such as XRD, ICP-MS, and thermogravimetric analysis will be also discussed in the presentation. The degradation of biochars was progressive with the rise in hydro-thermal gasification temperature from 350 to 650°C. Hydro-thermally produced biochars showed characteristics of transition char at low temperature (350 oC as gasification temperature) and properties of amorphous char at high temperature (≥550 oC). For steam-gasified biochars, higher BET surface area indicated the development of composite char. It is noteworthy that characterization results showed that the steam-gasified biochars did not have the compact aromatic structure of turbostratic char and their aromatic structure is not developed as biochars produced via pyrolysis. However, properties of steam-gasified biochars showed their great potential for industrial applications such as adsorptive and/or catalytic applications. In addition, both types of biochars due to their mineral contents can be tested for agricultural applications(soil amendment and productivity)

    Development of ni-co bimetallic catalyst for hydrogen generation via supercritical water gasification of lignin and waste biomass

    Get PDF
    In this study, a series of Ni, Co mono and bimetallic catalyst supported by Mg and Al were prepared and evaluated for hydrogen production from various model /waste biomass samples via SCWG process. The SCWG tests were conducted at 650 °C, 26 MPa and water to biomass ratio of five. It was found that for catalyst preparation, coprecipitation technique is better than impregnation, and the best catalyst in terms of hydrogen yield is CopCat-2Ni4Co4. The hydrogen yield from different biomass with this catalyst was found to be in the order of: Canola meal \u3e Timothy grass \u3e Wheat straw ~ Lignin \u3e Cellulose. Canola meal was identified as a promising feedstock for hydrogen production from SCWG. Also, the effect of catalyst loading on hydrogen yield was investigated.It was confirmed that high catalyst loading up to 50 wt% is desirable for hydrogen production. Please click Additional Files below to see the full abstract

    Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    Get PDF
    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500-750 degrees C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 degrees C to 600 degrees C and the value further decreased with increase of growth temperature up to 720 degrees C. A highly c-axis oriented GaN epitaxial film was obtained at 720 degrees C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 degrees C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 degrees C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE
    corecore