Engineering Conferences International

ECI Digital Archives

Bio-Char II: Production, Characterization and Applications

Proceedings

9-17-2019

Characteristic studies on the biochars produced by hydro-thermal and steam gasification of canola hull and canola meal fuel pellets

Franco Berruti

Sonil Nanda

Ajay K. Dalai

Janusz A. Kozinski

Follow this and additional works at: https://dc.engconfintl.org/biochar_ii

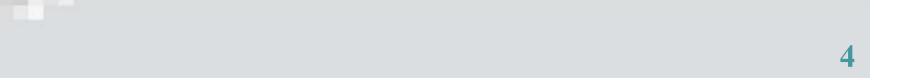
Part of the Engineering Commons

Characteristic studies on the biochars produced by hydro-thermal and steam gasification of canola hull and canola meal fuel pellets

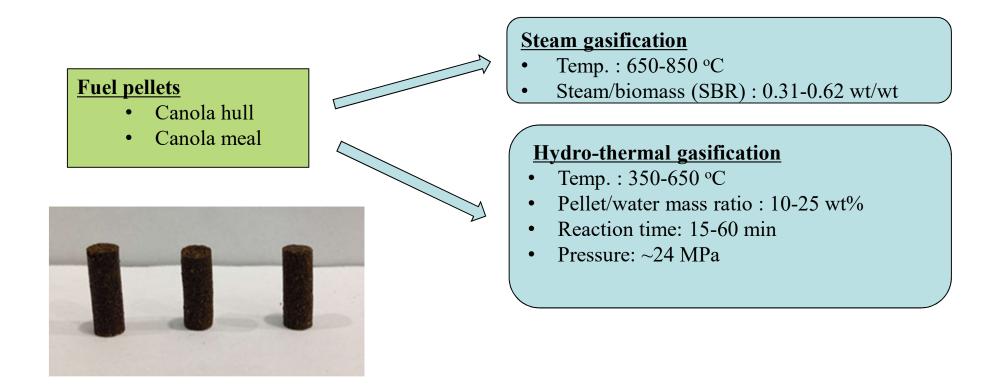
Ramin Azargohar¹, Sonil Nanda², Ajay K. Dalai¹, <u>Franco Berruti²</u>, and Janusz A. Kozinski³

¹Dept. of Chemical & Biological Engineering, University of Saskatchewan, Canada
² Department of Chemical & Biochemical Engineering, Western University, ON, Canada
³ Department of Chemical Engineering, University of Waterloo, ON, Canada

Introduction


- In 2018, nearly **20.3 and 10.9 million tonnes of canola** were produced in Canada and Saskatchewan, respectively.
- **Co-firing of fuel pellets** (in the range of 10-30 wt%) with coal is a promising method to drastically decrease GHG emissions.
- These pellets also can be **exported to Asia and Europe** to produce revenue from agricultural residues.

Objective


Comparative investigation on the physicochemical structure and properties of biochars produced using steam and hydro-thermal gasification of canola-based fuel pellets

UNIVERSITY OF SASKATCHEWAN **Pelletization Production of fuel pellets Effects of pelletization** Precursors: operating conditions • Canola hull **Optimization of pellet** Temp.: 80-120 °C Canola meal • formulation Applied force: 3,500-**Bio-additives** (Concentrations of bio-4,500 N Alkali Lignin • additives and water) Relaxation time: • Glycerol ٠ 15-55 s Amino acid • Water and: a INSTRON م[×] -*a* P1 -1 Single Unit Pelletizer (Instron 5966) **Central Composite Design**

Steam and hydro-thermal gasification

6

Precursors characterization

Canola Hull

Canola Meal

C = 43% H = 6% N = 2% S = 1% O = 39% Ash = 9% Moisture = 8% Volatiles = 70% Fixed C = 13% HHV = 17%

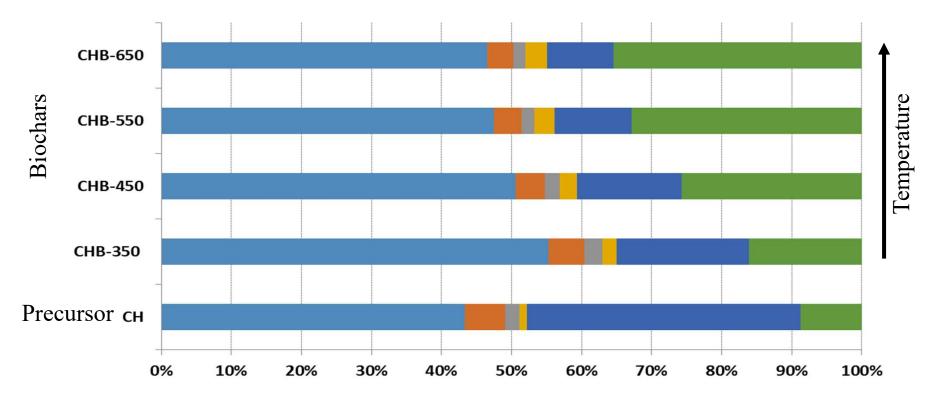
C = 48% H = 6% N = 6% S = 0.6% O = 32%

Ash = 7% Moisture = 8% Volatiles = 72%

Fixed C = 13% HHV = 20.5% Oil = 11%

Pellet properties

	Canola hull pellet	Canola meal pellet
Optimized formulation	L6/G4/A6/W17	L8/G8/A2/W4
Relaxed density (kg/m ³)	1,110	1,015
Temperature (°C)	100	100
Pressure (N)	3,500	3,500
Higher heating value (MJ/kg)	17	21
Mechanical durability (%)	99	99
Moisture adsorption at 30 °C and 90% humidity (wt%)	19.1	21.1



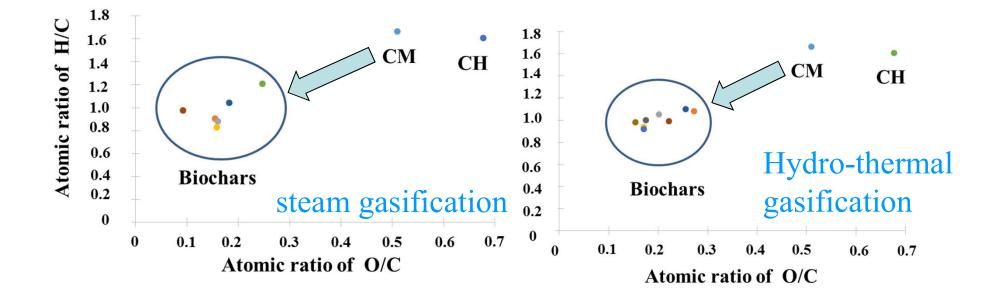
Elemental analysis of CH hydro-thermal biochar

(similar to all others)

■C ■H ■N ■S ■O ■Ash

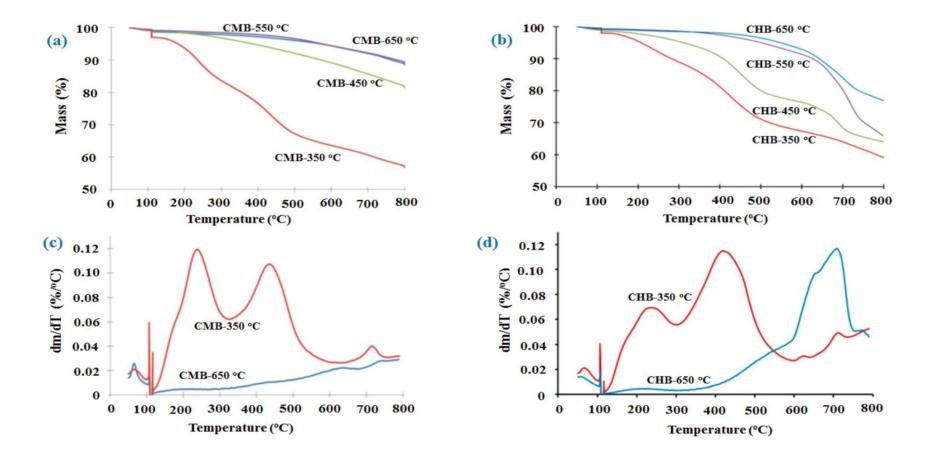
9

UNIVERSITY OF SASKATCHEWAN

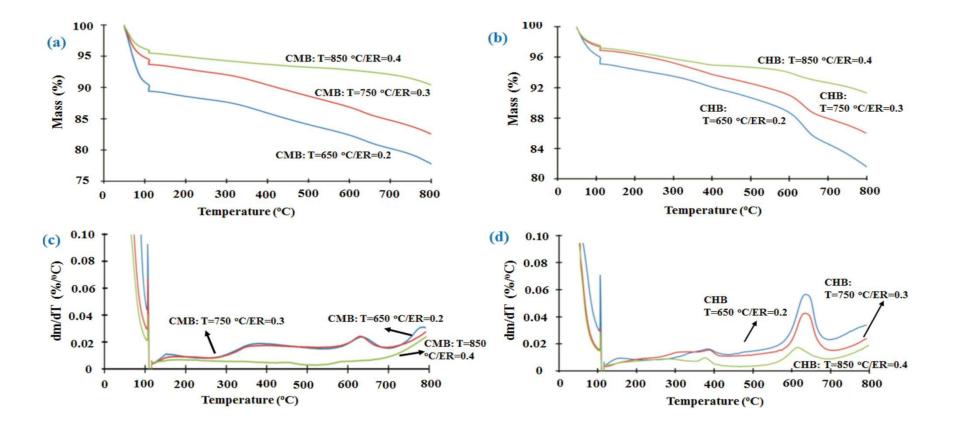


Elemental analysis highlights

- Oxygen content for both precursors decreased and ash sharply increased with increased severity
- **Carbon content** slightly decreased due to conversion to gaseous compounds.

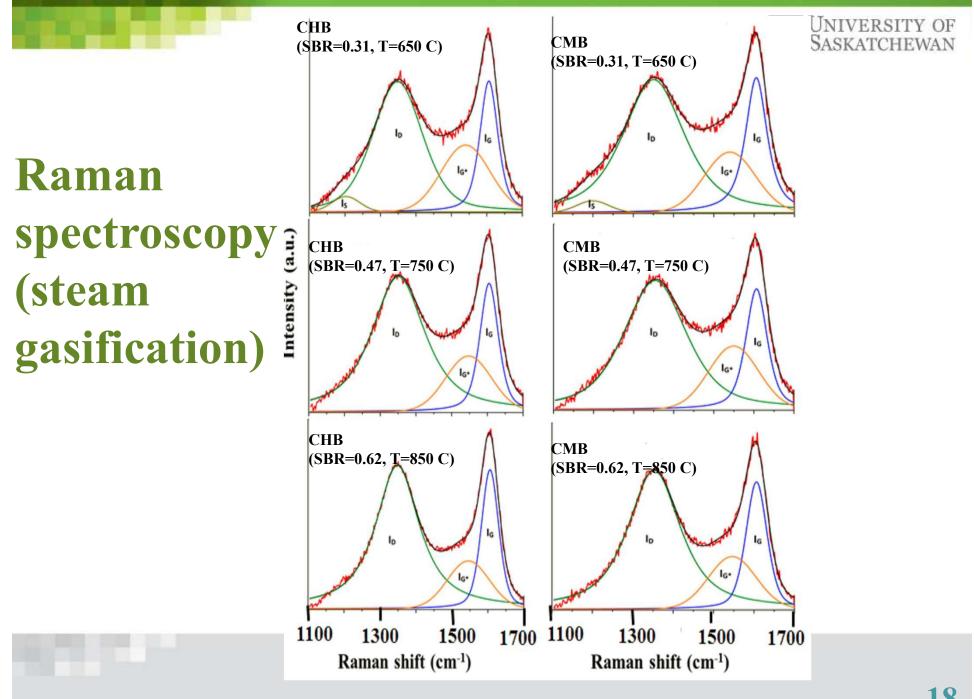

Van Krevelen plots for biochars and precursors

14

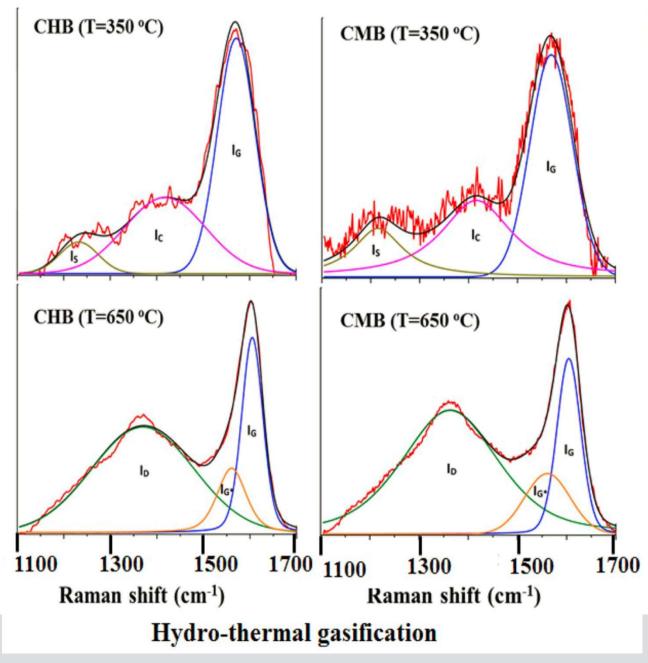


Thermogravimetric spectra (hydro-thermal gasification)

Thermogravimetric spectra (steam gasification)



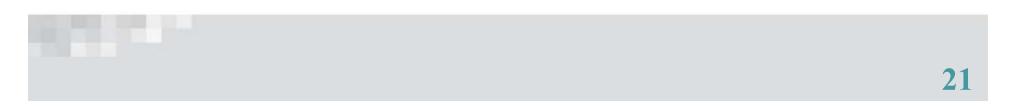
16



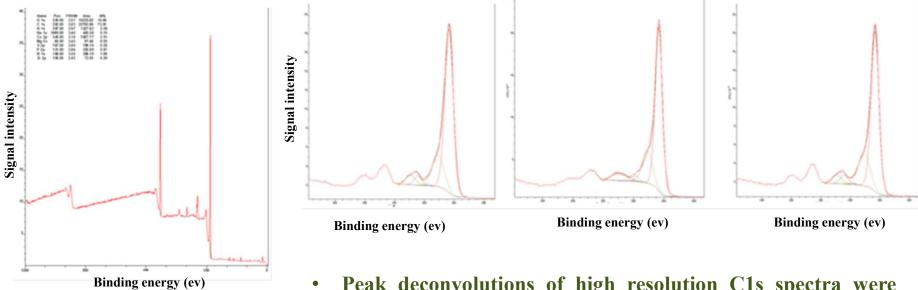
Thermogravimetric spectra

- Biochars produced at more severe operating conditions showed higher stability
- The mass change at higher temperatures is related to the development of aromatic structure of biochars and/or decomposition of carbonate compounds (inorganic carbon) in the ash

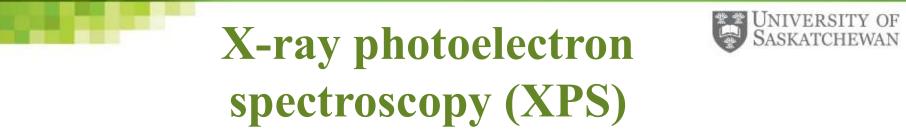
Raman spectroscopy (hydrothermal gasification)


Raman spectroscopy

	Gasification operating conditions		$I_D \! / I_G$	Atomic ratio O/C	Atomic ratio H/C
Steam gasification					
СНВ	SBR=0.31/T=650 °C		2.6	0.25	1.21
	SBR=0.47/T=750 °C		3.0	0.18	1.04
	SBR=0.62/T=850 °C		2.9	0.09	0.97
CMB	SBR=0.31/T=650 °C	Π	2.5	0.16	0.90
	SBR=0.47/T=750 °C		3.0	0.16	0.88
	SBR=0.62/T=850 °C		2.9	0.16	0.83
Hydro-thern	nal gasification		\leq		
CHB	T=350 °C		0.0	0.26	1.10
	T=650 °C		2.4	0.15	0.98
CMB	T=350 °C		0.0	0.27	1.08
	T=650 °C	N	2.9	0.17	0.92
			\smallsetminus		


Raman spectroscopy

- For hydro-thermal gasification, biochars prepared at the highest temperature (650 °C) showed a large change in I_D/I_G ratio confirming a drastic structural change in biochar structure, which can be related to the development of aromatic structures.
- For steam gasification, there was no significant difference in the values of I_D/I_G of biochars prepared from CH and CM at the same gasification operating conditions.


X-ray photoelectron spectroscopy (XPS) identify and quantify basic elements and functional groups on the bio-chars

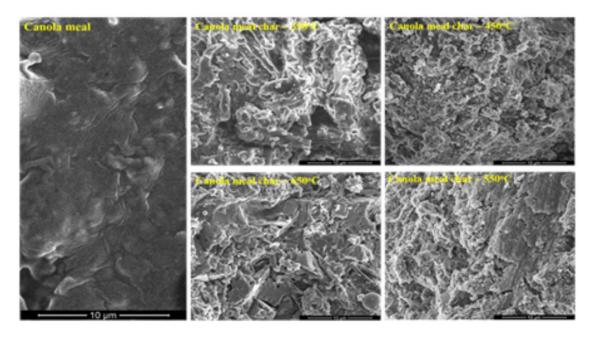
- Typical XPS survey scan
(for CHB-650 C)accomplished using the
PR 1.6).
- Peak deconvolutions of high resolution C1s spectra were accomplished using the CasaXPS software (version 2.3.16 PR 1.6).

UNIVERSITY OF SASKATCHEWAN

- For both classes of biochars, a decrease in O content and increase in C content with severity was observed corresponding to **aromatization**.
- Survey scan showed the presence of **mineral elements** in the produced biochars.

spectroscopy (XPS)

- The aromatic/aliphatic carbon contents of biochars were larger than 69% for all conditions, which confirm the aromatization in biochars
- No significant change in aromatic/aliphatic carbon content for canola hull biochars produced using **steam** gasification
- For biochars from canola hull through **hydro-thermal gasification**, an increase in temperature showed a positive effect on aromatic/aliphatic carbon content



Porosity (steam gasification of CM)						
	T=650 °C / SBR=0.31	T=750 °C / SBR=0.47	T=850 °C / SBR=0.62			
BET (m²/g)	226	397	440			
Pore volume (cm ³ /g)	0.09	0.24	0.28			

The same trend was observed for CH-based biochars

Porosity SASKA (hydro-thermal gasification of CM)

BET surface area of hydrothermally produced biochars were <10 m²/g

The same trend was observed for CH-based biochars

Inductively coupled plasma mass spectrometry (ICP-MS) – CM biochars

Elements	Biochar (T=650 °C / SBR=0.31) ¹	Biochar (T=750 °C / SBR=0.47)	Biochar (T=850 °C / SBR=0.62)	Biochar (SCW-650 °C)				
Essential elements (mg/g of biochar)								
Na	21	12	21	25				
K	50	51	61	70				
Mg	34	41	46	<1				
Ca	20	20	24	27				
P	63	61	75	99				
Fe	13	14	14	4				
Total	201	199	242	225				
(essential elements)								
Heavy/toxic elements (mg/g of biochar)								
Al	<1	<1	1	1				
Cr	3	3	3	1				
Cu	<1	<1	<1	<1				
Mn	<1	<1	<1	<1				
Mo	<1	<1	<1	<1				
Ni	1	2	1	1				
Zn	<1	<1	<1	<1				
Total	6	7	6	5				
(heavy elements)								

The concentration of essential elements is much larger than that for heavy metals.

Low level of heavy metals \implies no potential risk for soil amendment.

The same trend was observed for CH-based biochars

Key outcomes

- Hydro-thermal biochars have "transition char" characteristics when produced at low temperature, and "amorphous char" properties at high temperatures (\geq 550 °C)
- Based on the higher BET surface area and other characterization results, **steam-gasified biochars** have a "composite char" structure
- An increase in aromaticity and inherent mineral compounds are known to increase stability (oxidation resistance) of biochar
- Hydro-thermal biochars are suitable for soil amendment.
- The higher BET surface area for steam-gasified biochars shows their potential as adsorbents or for catalytic applications.

Acknowledgements

- BioFuelNet (Canada), Saskatchewan Ministry of Agriculture (ADF, Saskatchewan), Natural Sciences and Engineering Research Council of Canada (NSERC), and Canada Research Chair (CRC) program for financial support.
- Milligan Biofuels Inc. (SK, Canada) for providing the precursors.

