799 research outputs found

    Non equilibrium optical properties in semiconductors from first--principles: a combined theoretical and experimental study of bulk silicon

    Get PDF
    The calculation of the equilibrium optical properties of bulk silicon by using the Bethe--Salpeter equation solved in the Kohn--Sham basis represents a cornerstone in the development of an ab--initio approach to the optical and electronic properties of materials. Nevertheless calculations of the {\em transient} optical spectrum using the same efficient and successful scheme are scarce. We report, here, a joint theoretical and experimental study of the transient reflectivity spectrum of bulk silicon. Femtosecond transient reflectivity is compared to a parameter--free calculation based on the non--equilibrium Bethe--Salpeter equation. By providing an accurate description of the experimental results we disclose the different phenomena that determine the transient optical response of a semiconductor. We give a parameter--free interpretation of concepts like bleaching, photo--induced absorption and stimulated emission, beyond the Fermi golden rule. We also introduce the concept of optical gap renormalization, as a generalization of the known mechanism of band gap renormalization. The present scheme successfully describes the case of bulk silicon, showing its universality and accuracy.Comment: 14 pages, 13 figure

    Bioecologia e controle das pragas da videira.

    Get PDF
    bitstream/CNPUV/8141/1/cir063.pd

    Resonant optical control of the structural distortions that drive ultrafast demagnetization in Cr2_2O3_3

    Full text link
    We study how the color and polarization of ultrashort pulses of visible light can be used to control the demagnetization processes of the antiferromagnetic insulator Cr2_2O3_3. We utilize time-resolved second harmonic generation (SHG) to probe how changes in the magnetic and structural state evolve in time. We show that, varying the pump photon-energy to excite either localized transitions within the Cr or charge transfer states, leads to markedly different dynamics. Through a full polarization analysis of the SHG signal, symmetry considerations and density functional theory calculations, we show that, in the non-equilibrium state, SHG is sensitive to {\em both} lattice displacements and changes to the magnetic order, which allows us to conclude that different excited states couple to phonon modes of different symmetries. Furthermore, the spin-scattering rate depends on the induced distortion, enabling us to control the timescale for the demagnetization process. Our results suggest that selective photoexcitation of antiferromagnetic insulators allows fast and efficient manipulation of their magnetic state.Comment: 7 pages, 5 figure

    Temperature dependence of the thermal boundary resistivity of glass-embedded metal nanoparticles

    Get PDF
    The temperature dependence of the thermal boundary resistivity is investigated in glass-embedded Ag particles of radius 4.5 nm, in the temperature range from 300 to 70 K, using all-optical time-resolved nanocalorimetry. The present results provide a benchmark for theories aiming at explaining the thermal boundary resistivity at the interface between metal nanoparticles and their environment, a topic of great relevance when tailoring thermal energy delivery from nanoparticles as for applications in nanomedicine and thermal management at the nanoscaleComment: 4 pages, 3 figure

    Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs

    Get PDF
    Background: Dietary intervention studies are required to deeper understand the variability of gut microbial ecosystem in healthy dogs under different feeding conditions and to improve diet formulations. The aim of the study was to investigate in dogs the influence of a raw based diet supplemented with vegetable foods on faecal microbiome in comparison with extruded food. Methods: Eight healthy adult Boxer dogs were recruited and randomly divided in two experimental blocks of 4 individuals. Dogs were regularly fed a commercial extruded diet (RD) and starting from the beginning of the trial, one group received the raw based diet (MD) and the other group continued to be fed with the RD diet (CD) for a fortnight. After 14 days, the two groups were inverted, the CD group shifted to the MD and the MD shifted to the CD, for the next 14 days. Faeces were collected at the beginning of the study (T0), after 14 days (T14) before the change of diet and at the end of experimental period (T28) for DNA extraction and analysis of metagenome by sequencing 16SrRNA V3 and V4 regions, short chain fatty acids (SCFA), lactate and faecal score. Results: A decreased proportion of Lactobacillus, Paralactobacillus (P < 0.01) and Prevotella (P < 0.05) genera was observed in the MD group while Shannon biodiversity Index significantly increased (3.31 +/- 0.15) in comparison to the RD group (2.92 +/- 0.31; P < 0.05). The MD diet significantly (P < 0.05) decreased the Faecal Score and increased the lactic acid concentration in the feces in comparison to the RD treatment (P < 0.01). Faecal acetate was negatively correlated with Escherichia/Shigella and Megamonas (P < 0.01), whilst butyrate was positively correlated with Blautia and Peptococcus (P < 0.05). Positive correlations were found between lactate and Megamonas (P < 0.05), Escherichia/Shigella (P < 0.01) and Lactococcus (P < 0.01). Conclusion: These results suggest that the diet composition modifies faecal microbial composition and end products of fermentation. The administration of MD diet promoted a more balanced growth of bacterial communities and a positive change in the readouts of healthy gut functions in comparison to RD diet

    Anisotropic complex refractive indices of atomically thin materials: determination of the optical constants of few-layer black phosphorus

    Full text link
    In this work we briefly review the studies of the optical constants of monolayer transition metal dichalcogenides and few layer black phosphorus, with particular emphasis to the complex dielectric function and refractive index. Specifically, we give an estimate of the complex index of refraction of phosphorene and few-layer black phosphorus. We extracted the complex index of refraction of this material from differential reflectance data reported in literature by employing a constrained Kramers-Kronig analysis. Finally, we studied the linear optical response of multilayer systems embedding phosphorene by using the transfer matrix method.Comment: 11 pages, 3 figure

    Substitution of a commercial diet with raw meat complemented with vegetable foods containing chickpeas or peas affects faecal microbiome in healthy dogs

    Get PDF
    The aim of the study was to investigate if the inclusion of chickpeas or peas in the diet can modify faecal microbiome in dogs. Eight healthy adult Border collie, fed a commercial extruded diet as reference diet (RD), were divided in two groups of four individuals. At the beginning of the trial, one group received a diet based mainly of raw meat, rice and chickpeas (CP) and in the other group this pulse was substituted with peas (PE). After 14 days, the dogs with CP diet shifted to the PE and those with PE shifted to the CP diet, for another 14 days. Faeces were col- lected at the beginning (T0), after 14 days (T14) and at the end of the study (T28). Faeces were analysed for 16S rRNA, short chain fatty acids (SCFA), lactate, pH and faecal score was also eval- uated. The SCFA and lactate in the faeces were not affected by the inclusion of pulses, with the only exception of isovalerate, which was higher in CP and PE diets in comparison with RD diet (p &lt; .05). The abundances of Erysipelotrichaceae incertae sedis, Eubacterium, Anaerobacter and Sarcina significantly differed in CP and PE in comparison with RD. Moreover, the genera Prevotella, Lactobacillus, Alloprevotella, Suttarella varied significantly between CP and PE diets. The observed modifications of faecal microbioma were related not only to the change from RD to CP or PE, but also to the type of pulse, chickpeas or peas. However, long-term studies are required to investigate the implications that pulses can have for gut health

    Strong enhancement of d-wave superconducting state in the three-band Hubbard model coupled to an apical oxygen phonon

    Full text link
    We study the hole binding energy and pairing correlations in the three-band Hubbard model coupled to an apical oxygen phonon, by exact diagonalization and constrained-path Monte Carlo simulations. In the physically relevant charge-transfer regime, we find that the hole binding energy is strongly enhanced by the electron-phonon interaction, which is due to a novel potential-energy-driven pairing mechanism involving reduction of both electronic potential energy and phonon related energy. The enhancement of hole binding energy, in combination with a phonon-induced increase of quasiparticle weight, leads to a dramatic enhancement of the long-range part of d-wave pairing correlations. Our results indicate that the apical oxygen phonon plays a significant role in the superconductivity of high-TcT_c cuprates.Comment: 5 pages, 5 figure

    Laser-driven quantum magnonics and THz dynamics of the order parameter in antiferromagnets

    Full text link
    The impulsive generation of two-magnon modes in antiferromagnets by femtosecond optical pulses, so-called femto-nanomagnons, leads to coherent longitudinal oscillations of the antiferromagnetic order parameter that cannot be described by a thermodynamic Landau-Lifshitz approach. We argue that this dynamics is triggered as a result of a laser-induced modification of the exchange interaction. In order to describe the oscillations we have formulated a quantum mechanical description in terms of magnon pair operators and coherent states. Such an approach allowed us to} derive an effective macroscopic equation of motion for the temporal evolution of the antiferromagnetic order parameter. An implication of the latter is that the photo-induced spin dynamics represents a macroscopic entanglement of pairs of magnons with femtosecond period and nanometer wavelength. By performing magneto-optical pump-probe experiments with 10 femtosecond resolution in the cubic KNiF3_3 and the uniaxial K2_2NiF4_4 collinear Heisenberg antiferromagnets, we observed coherent oscillations at the frequency of 22 THz and 16 THz, respectively. The detected frequencies as a function of the temperature ideally fit the two-magnon excitation up to the N\'eel point. The experimental signals are described as dynamics of magnetic linear dichroism due to longitudinal oscillations of the antiferromagnetic vector.Comment: 25 pages, 10 figure
    • …
    corecore