17 research outputs found

    Epidemiological characteristics of respiratory viruses in hospitalized children during the COVID-19 pandemic in southwestern China

    Get PDF
    BackgroundMultinational studies have reported that the implementation of nonpharmaceutical interventions (NPIs) to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission coincided with the decline of other respiratory viruses, such as influenza viruses and respiratory syncytial virus.ObjectiveTo investigate the prevalence of common respiratory viruses during the coronavirus disease 2019 (COVID-19) pandemic.MethodsRespiratory specimens of children with lower respiratory tract infections (LRTIs) hospitalized at the Children’s Hospital of Chongqing Medical University from January 1, 2018 to December 31, 2021 were collected. Seven common pathogens, including respiratory syncytial virus (RSV), adenovirus (ADV), influenza virus A and B (Flu A, Flu B), and parainfluenza virus types 1–3 (PIV1–3), were detected by a multiplex direct immunofluorescence assay (DFA). Demographic data and laboratory test results were analyzed.Results1) A total of 31,113 children with LRTIs were enrolled, including 8141 in 2018, 8681 in 2019, 6252 in 2020, and 8059 in 2021.The overall detection rates decreased in 2020 and 2021 (P < 0.001). The detection rates of RSV, ADV, Flu A, PIV-1, and PIV-3 decreased when NPIs were active from February to August 2020, with Flu A decreasing most predominantly, from 2.7% to 0.3% (P < 0.05). The detection rates of RSV and PIV-1 resurged and even surpassed the historical level of 2018–2019, while Flu A continued decreasing when NPIs were lifted (P < 0.05). 2) Seasonal patterns of Flu A completely disappeared in 2020 and 2021. The Flu B epidemic was observed until October 2021 after a long period of low detection in 2020. RSV decreased sharply after January 2020 and stayed in a nearly dormant state during the next seven months. Nevertheless, the detection rates of RSV were abnormally higher than 10% in the summer of 2021. PIV-3 decreased significantly after the COVID-19 pandemic; however, it atypically surged from August to November 2020.ConclusionThe NPIs implemented during the COVID-19 pandemic affected the prevalence and seasonal patterns of certain viruses such as RSV, PIV-3, and influenza viruses. We recommend continuous surveillance of the epidemiological and evolutionary dynamics of multiple respiratory pathogens, especially when NPIs are no longer necessary

    Impaired Delta Np63 Expression is Associated with Poor Tumor Development in Transitional Cell Carcinoma of the Bladder

    Get PDF
    The oncogenic isoform of the p63 protein, delta Np63 (ΔNp63), plays an important role in the pathogenesis of many epithelial carcinomas, and emerging evidences suggest that ΔNp63 is a promising drug target. However, the functions of ΔNp63 in transitional cell carcinoma of bladder (TCCB) are poorly defined. In this study, a ΔNp63 shRNA expression vector was transfected into TCCB cell line 5637 and cell cycling, cell proliferation and protein expression were assessed by flow cytometry and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-dimethyl tetrazolium bromide (MTT) assay, and immunohistochemistry, respectively. The ΔNp63 shRNA expression vector was also injected into 5637 cell xenograft tumors in nude mice, and tumor size was measured, tumor tissue morphology was assessed by immunohistopathology and transmission electron microscopy. In the in vitro study, ΔNp63 shRNA transfection caused successful ΔNp63 gene silencing and resulted in significant arrest of cell cycling and cellular proliferation (p<0.05) as well as cyclin D1 expression. In the nude mouse xenograft model, ΔNp63 shRNA greatly inhibited tumor growth, induced tumor cell apoptosis (p<0.05) and resulted in cyclin D1 downregulation. Our data suggest that ΔNp63 may play an oncogenic role in TCCB progression through promoting cell survival and proliferation. Intratumoral administration of ΔNp63-specific shRNA suppressed tumor ΔNp63 expression and cellular proliferation while promoted tumor cellular apoptosis, and therefore inhibited tumor growth and improved survival of xenograft-bearing mice, which was not accompanied by significant signs of systemic toxicity

    Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST

    No full text
    The adaptive angle-Doppler compensation method adaptively extracts requisite information based on the data itself, thereby avoiding the problem of performance degradation due to inertial system error. However, this method requires the estimation and eigen decomposition of a sample covariance matrix, which has high computational complexity and limits its real-time application. In this paper, we investigate an adaptive angle-Doppler compensation method based on Projection Approximation Subspace Tracking (PAST). This method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector in each range cell, thereby avoiding the computational burden of matrix estimation and eigen decompositon. Then, the spectral centers of all range cells are overlapped by two-dimensional compensation. Our simulation results demonstrate that the proposed method can effectively reduce the nonhomogeneity of airborne bistatic radar, with a performance is similar to that of eigen-decomposition algorithms, but with a reduced computational load and easy implementation

    Recurrent Wheezing and Cough Caused by Double Aortic Arch, Not Asthma

    No full text
    Introduction. Double aortic arch is a congenital vascular abnormality in which the connected segments and their branches course between and compress the trachea and esophagus, often resulting in invariable airway compression. Case Presentation. A 4-year-old boy with a history of recurrent wheezing was admitted to our hospital for evaluation of asthma based on his past medical history, persistent cough, wheezing, and airway hyperresponsiveness by lung function test. Double aortic arch was diagnosed with computed tomography angiogram. After surgery, the respiratory infection improved strikingly. Early diagnosis and treatment may prevent chronic, irreversible complications. Conclusion. We present a case of double aortic arch masquerading as asthma

    LPS Exposure in Early Life Protects Against Mucus Hypersecretion in Ovalbumin-Induced Asthma by Down-Regulation of the IL-13 and JAK-STAT6 Pathways

    No full text
    Background/Aims: Previous studies have shown that lipopolysaccharide (LPS) exposure may have a protective effect on asthma by reducing airway hyper-responsiveness, airway inflammation and serum IgE levels. However, there are few studies investigating the effect of LPS on mucous secretion in asthma. In this study, we evaluate the relationship between LPS pre-treatment in infant mice and airway mucus hypersecretion in an OVA (ovalbumin)-induced asthma model, and further explore the mechanisms behind this effect. Methods: Mice were pre-treated with LPS by intranasal instillation (i.n.) from the 3rd day of life for 10 consecutive days before the OVA-induced asthma model was established. In order to detect mucus secretion, periodic acid-Schiff (PAS) staining was carried out, and the expression of Muc5ac was detected. The IL-13 levels in Bronchoalveolar lavage fluid (BALF) and lung tissue were also detected. In vitro, the expression of Muc5ac mRNA and protein was quantified in IL-13-stimulated 16HBE cells with or without LPS pre-treatment. In addition, proteins in the JAK2/STAT6 pathway, transcription factors (forkhead box transcription factor A2 (FOXA2), activation protein-1(AP-1), NF-κB), and the levels of reactive oxygen species (ROS) were also measured in vivo and in vitro. Results: LPS pre-treatment reduced mucus secretion, as demonstrated by decreased PAS staining and muc5ac expression. Further exploration of the underlying mechanisms of this phenomenon revealed that LPS pre-treatment decreased the production of IL-13, IL-13 induced ROS synthesis was reduced, and the JAK2/STAT6 pathway was inhibited. Decreased stat6 increased transcription factor FOXA2, and the relatively increased FOXA2 further decreased the level of Muc5ac and mucous hypersecretion in OVA-induced asthma. Conclusions: LPS pre-treatment ameliorated mucus hypersecretion in an OVA-induced asthma model by inhibition of IL-13 production and by further inhibiting the JAK2/STAT6 pathway and ROS activity, and up-regulating expression of FOXA2

    Deletion of SMARCA4 impairs alveolar epithelial type II cells proliferation and aggravates pulmonary fibrosis in mice

    No full text
    Alveolar epithelial cells (AECs) injury and failed reconstitution of the AECs barrier are both integral to alveolar flooding and subsequent pulmonary fibrosis (PF). Nevertheless, the exact mechanisms regulating the regeneration of AECs post-injury still remain unclear. SMARCA4 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF, which is essential for kidney and heart fibrosis. We investigates SMARCA4 function in lung fibrosis by establishing PF mice model with bleomycin firstly and found that the expression of SMARCA4 was mainly enhanced in alveolar type II (ATII) cells. Moreover, we established an alveolar epithelium-specific SMARCA4-deleted SP-C-rtTA/(tetO)7-Cre/SMARCA4f/f mice (SOSM4Δ/Δ) model, as well as a new SMARCA4-deleted alveolar type II (ATII)-like mle-12 cell line. We found that the bleomycin-induced PF was more aggressive in SOSM4Δ/Δ mice. Also, the proliferation of ATII cells was decreased with the loss of SMARCA4 in vivo and in vitro. In addition, we observed increased proliferation of ATII cells accompanied by abnormally high expression of SMARCA4 in human PF lung sections. These data uncovered the indispensable role of SMARCA4 in the proliferation of ATII cells, which might affect the progression of PF
    corecore