13 research outputs found

    The Effect of Heat Shock on Myogenic Differentiation of Human Skeletal-Muscle-Derived Mesenchymal Stem/Stromal Cells

    No full text
    Muscle injuries, degenerative diseases and other lesions negatively affect functioning of human skeletomuscular system and thus quality of life. Therefore, the investigation of molecular mechanisms, stimulating myogenic differentiation of primary skeletal-muscle-derived mesenchymal stem/stromal cells (SM-MSCs), is actual and needed. The aim of the present study was to investigate the myogenic differentiation of CD56 (neural cell adhesion molecule, NCAM)-positive and -negative SM-MSCs and their response to the non-cytotoxic heat stimulus. The SM-MSCs were isolated from the post operation muscle tissue, sorted by flow cytometer according to the CD56 biomarker and morphology, surface profile, proliferation and myogenic differentiation has been investigated. Data show that CD56(+) cells were smaller in size, better proliferated and had significantly higher levels of CD146 (MCAM) and CD318 (CDCP1) compared with the CD56(−) cells. At control level, CD56(+) cells significantly more expressed myogenic differentiation markers MYOD1 and myogenin (MYOG) and better differentiated to the myogenic direction. The non-cytotoxic heat stimulus significantly stronger stimulated expression of myogenic markers in CD56(+) than in CD56(−) cells that correlated with the multinucleated cell formation. Data show that regenerative properties of CD56(+) SM-MSCs can be stimulated by an extracellular stimulus and be used as a promising skeletal muscle regenerating tool in vivo

    Struktūrinė biochemija : mokymo priemonė studentams

    No full text
    Bibliogr.: p. 134Vytauto Didžiojo universiteta

    Histone deacetylase inhibitor suberoylanilide hydroxamic acid improves energetic status and cardiomyogenic differentiation of human dilated myocardium-derived primary mesenchymal cells

    No full text
    BACKGROUND: In this study the effect of histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) on the energetic status and cardiomyogenic differentiation of human healthy and dilated myocardium-derived mesenchymal stromal cells (hmMSC) have been investigated. METHODS: The hmMSC were isolated from the healthy and dilated post-operation heart biopsies by explant outgrowth method. Cell proliferation, HDAC activity, mitochondrial membrane potential, and level of adenosine triphosphate (ATP) were evaluated. The effect of SAHA on mitochondrial parameters has been investigated also by Seahorse XF analyzer and cardiomyogenic differentiation was confirmed by the expression of transcription factor NK2 Homeobox 5 (Nkx2.5), cardiac troponin T and alpha cardiac actin at gene and protein levels. RESULTS: Dilated myocardium-derived hmMSC had almost 1.5 folds higher HDAC activity compared to the healthy cells and significantly lower mitochondrial membrane potential and ATP level. HDAC class I and II inhibitor SAHA improved energetic status of mitochondria in dilated myocardium-isolated hmMSC and increased expression of cardiac specific proteins during 14 days of exposure of cells to SAHA. CONCLUSIONS: HDAC inhibitor SAHA can be a promising therapeutic for dilated cardiomyopathy (DCM). Dilated hmMSC exposed to SAHA improved energetic status and, subsequently, cardiomyogenic differentiation. Data suggest that human dilated myocardium-derived MSC still have cardio tissue regenerative potential, which might be stimulated by HDAC inhibitors

    The Effect of a Unique Region of Parvovirus B19 Capsid Protein VP1 on Endothelial Cells

    No full text
    Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells (EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral capsid has been reported to act as a major determinant of viral tropism for erythroid precursor cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-related pathways. Our data suggest that high levels of circulating B19V during acute infection can cause endothelial damage, even without active replication or direct internalization into the cells

    Oxidative properties of blood-derived extracellular vesicles in 15 patients after myocardial infarction

    No full text
    Background: In this study, we investigated the yield and composition of extracellular vesicles (EVs) derived from 40- to 60-year-old healthy male controls and post-myocardial infarction (post-MI) patients' blood samples and assessed their pro-inflammatory and oxidative-related properties. Our study aimed to determine the EV yield and composition differences between both groups and to find out if there were differences between EV-mediated oxidative stress reactions. Material/Methods: Fifteen post-MI patients and 25 healthy individuals were included. EVs were isolated by ultracentrifugation and analyzed using nanotracking analysis (NTA), western blotting and fluorescent flow cytometry (FFC). Oxidative stress (OS) in blood samples was identified by measuring malondialdehyde concentration from serum, while EVs-induced OS was measured in the human vein endothelium cells (HUVEC) using H2DCFDA (2',7'-dichloro-dihydrofluorescein diacetate) fluorescence as a marker. Results: We found higher EVs concentration in healthy controls than in the post-MI group (7.07±3.1 E+10 ml vs 3.1±1.9 E+10 ml, P<0.001) and a higher level of CD9-positive exosomes (MFI 275±39.5 vs 252±13, P<0.001). Post-MI patients' EVs carry pro-oxidative nicotinamide adenine dinucleotide phosphate (NADPH) oxidases isoforms NOX1 (NADPH oxidase 1), NOX5 (NADPH oxidase 5) and NOX2 (NADPH oxidase 2) and anti-oxidative thioredoxin, extracellular signal-regulated kinases 1/2 (ERK1/2), and protein kinase B (Akt B). In the post-MI EVs, there was a higher predominance of enzymes with anti-oxidative effects, leading to weaker OS-inducing properties in the HUVEC cells. Conclusions: We conclude that post-MI patient blood sample EVs have stronger anti- than pro-oxidative properties and these could help fight against post-MI consequences

    The effect of a unique region of parvovirus B19 capsid protein VP1 on endothelial cells

    No full text
    Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells (EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral capsid has been reported to act as a major determinant of viral tropism for erythroid precursor cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-related pathways. Our data suggest that high levels of circulating B19V during acute infection can cause endothelial damage, even without active replication or direct internalization into the cells

    Cytoprotective Effects of Mangiferin and <i>Z</i>-Ligustilide in PAH-Exposed Human Airway Epithelium in Vitro

    Get PDF
    According to World Health Organisation (WHO) air pollution increases the risk of cardiovascular disorders, respiratory diseases, including COPD, lung cancer and acute respiratory infections, neuro-degenerative and other diseases. It is also known that various phytochemicals may mitigate such risks. This study tested if phytochemicals mangiferin (MNG) and Z-ligustilide (Z-LG) may protect PAH-exposed human lung bronchial epithelial cells (BEAS-2B). Organic PAH extract was obtained from the urban fine PM with high benzo(a)pyrene content collected in Eastern European mid-sized city during winter heating season. Cell proliferation traits and levels of intracellular oxidative stress were examined. Effect of MNG (0.5 &#181;g/mL) alone or in combination with PAH on bronchial epithelium wound healing was evaluated. Both phytochemicals were also evaluated for their antioxidant properties in acellular system. Treatment with MNG produced strong cytoprotective effect on PAH-exposed cells (p &lt; 0.01) while Z-LG (0.5 &#181;g/mL) exhibited strong negative effect on cell proliferation in untreated and PAH-exposed cells (p &lt; 0.001). MNG, being many times stronger antioxidant than Z-LG in chemical in vitro assays (p &lt; 0.0001), was also able to decrease PAH-induced oxidative stress in the cell cultures (p &lt; 0.05). Consequently MNG ameliorates oxidative stress, speeds up wound healing process and restores proliferation rate in PAH-exposed bronchial epithelium. Such protective effects of MNG in air pollution affected airway epithelium stimulate further research on this promising phytochemical

    The Role of Serum Adiponectin for Outcome Prediction in Patients with Dilated Cardiomyopathy and Advanced Heart Failure

    No full text
    Clinical interpretation of patients’ plasma adiponectin (APN) remains challenging; its value as biomarker in dilated cardiomyopathy (DCM) is equivocal. We evaluated whether circulating APN level is an independent predictor of composite outcome: death, left ventricle assist device (LVAD) implantation, and heart transplantation (HT) in patients with nonischemic DCM. 57 patients with nonischemic DCM (average LV diastolic diameter 6.85 cm, LV ejection fraction 26.63%, and pulmonary capillary wedge pressure 22.06  mmHg) were enrolled. Patients underwent echocardiography, right heart catheterization, and endomyocardial biopsy. During a mean follow-up of 33.42 months, 15 (26%) patients died, 12 (21%) patients underwent HT, and 8 (14%) patients were implanted with LVAD. APN level was significantly higher in patients who experienced study endpoints (23.4 versus 10.9 ug/ml, p=0.01). APN was associated with worse outcome in univariate Cox proportional hazards model (HR 1.04, CI 1.02–1.07, p=0.001) but lost significance adjusting for other covariates. Average global strain (AGS) is an independent outcome predictor (HR 1.42, CI 1.081–1.866, p=0.012). Increased circulating APN level was associated with higher mortality and may be an additive prognostic marker in DCM with advanced HF. Combination of serum (APN, BNP, TNF-α) and echocardiographic (AGS) markers may increase the HF predicting power for the nonischemic DCM patients

    The role of cardiac T-cadherin in the indicating heart failure severity of patients with non-ischemic dilated cardiomyopathy

    No full text
    Background and objectives: T-cadherin (T-cad) is one of the adiponectin receptors abundantly expressed in the heart and blood vessels. Experimental studies show that T-cad sequesters adiponectin in cardiovascular tissues and is critical for adiponectin-mediated cardio-protection. However, there are no data connecting cardiac T-cad levels with human chronic heart failure (HF). The aim of this study was to assess whether myocardial T-cad concentration is associated with chronic HF severity and whether the T-cad levels in human heart tissue might predict outcomes in patients with non-ischemic dilated cardiomyopathy (NI-DCM). Materials and Methods: 29 patients with chronic NI-DCM and advanced HF were enrolled. Patients underwent regular laboratory investigations, echocardiography, coronary angiography, and right heart catheterization. TNF- and IL6 in serum were detected by enzyme-linked immunosorbent assay (ELISA). Additionally, endomyocardial biopsies were obtained, and the levels of T-cad were assessed by ELISA and CD3, CD45Ro, CD68, and CD4- immunohistochemically. Mean pulmonary capillary wedge pressure (PCWP) was used as a marker of HF severity, subdividing patients into two groups: mean PCWP > 19 mmHg vs. mean PCWP 19 mmHg compared to those with mean PCWP 19 mmHg (p = 0.058). Cardiac T-cad levels correlate negatively with myocardial CD3 cell count (rho = 0.423, p = 0.028). Conclusions: Univariate Cox regression analysis did not prove T-cad to be an outcome predictor (HR = 1, p = 0.349). However, decreased T-cad levels in human myocardium can be an additional indicator of HF severity. T-cad in human myocardium has an anti-inflammatory role. More studies are needed to extend the role of T-cad in the outcome prediction of patients with NI-DCM
    corecore