48 research outputs found

    1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

    Full text link
    The 1st^{\text{st}} Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.Comment: MaCVi 2023 was part of WACV 2023. This report (38 pages) discusses the competition as part of MaCV

    SCYX-7158, an Orally-Active Benzoxaborole for the Treatment of Stage 2 Human African Trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT) is caused by infection with the parasite Trypanosoma brucei and is an important public health problem in sub-Saharan Africa. New, safe, and effective drugs are urgently needed to treat HAT, particularly stage 2 disease where the parasite infects the brain. Existing therapies for HAT have poor safety profiles, difficult treatment regimens, limited effectiveness, and a high cost of goods. Through an integrated drug discovery project, we have discovered and optimized a novel class of boron-containing small molecules, benzoxaboroles, to deliver SCYX-7158, an orally active preclinical drug candidate. SCYX-7158 cured mice infected with T. brucei, both in the blood and in the brain. Extensive pharmacokinetic characterization of SCYX-7158 in rodents and non-human primates supports the potential of this drug candidate for progression to IND-enabling studies in advance of clinical trials for stage 2 HAT

    Mass screening is a key component to fight against SARS-CoV-2 and return to normalcy

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had highly transmissible and pathogenic, which caused serious economic loss and hazard to public health. Different countries have developed strategies to deal with the COVID-19 pandemic that fit their epidemiological situations, capacities, and values. Mass screening combined with control measures rapidly reduced the transmission of the SARS-CoV-2 infection. The COVID-19 pandemic has dramatically highlighted the essential role of diagnostics capacity in the control of communicable diseases. Mass screening has been increasingly used to detect suspected COVID-19 cases and their close contacts, asymptomatic case, patients attending fever clinics, high-risk populations, employees, even all population to identify infectious individuals. Mass screening is a key component to fight against SARS-CoV-2 and return to normalcy. Here we describe the history of mass screening, define the scope of mass screening, describe its application scenarios, and discuss the impact and challenges of using this approach to control COVID-19. We conclude that through a comprehension screening program and strong testing capabilities, mass screening could help us return to normalcy more quickly.</p

    Fine Particulate Air Pollution and Hospital Utilization for Upper Respiratory Tract Infections in Beijing, China

    No full text
    Few studies have examined the association between fine particulate matter (PM2.5) and upper respiratory tract infections (URTI) in urban cities. The principal aim of the present study was to evaluate the short-term impact of PM2.5 on the incidence of URTI in Beijing, China. Data on hospital visits due to URTI from 1 October 2010 to 30 September 2012 were obtained from the Beijing Medical Claim Data for Employees, a health insurance database. Daily PM2.5 concentration was acquired from the embassy of the United States of America (US) located in Beijing. A generalized additive Poisson model was used to analyze the effect of PM2.5 on hospital visits for URTI. We found that a 10 &#956;g/m3 increase in PM2.5 concentration was associated with 0.84% (95% CI, 0.05&#8315;1.64%) increase in hospital admissions for URTI at lag 0&#8315;3 days, but there were no significant associations with emergency room or outpatient visits. Compared to females, males were more likely to be hospitalized for URTI when the PM2.5 level increased, but other findings did not differ by age group or gender. The study suggests that short-term variations in PM2.5 concentrations have small but detectable impacts on hospital utilization due to URTI in adults

    Achieving Tunable Microwave Absorbing Properties by Phase Control of NiCoMnSn Alloy Flakes

    No full text
    Microwave absorption performance of metal alloys are highly dependent on their phase structures. However, the phase control of Ni&ndash;Mn-based alloys to achieve effective microwave absorption properties has been rarely reported. In this work, Ni43Co7Mn39Sn11 alloy flakes were fabricated by balling milling method, and the contents of &gamma; phase in the flakes were tuned by the subsequent heat treatment process. The as-fabricated Ni43Co7Mn39Sn11 alloy flakes exhibited excellent tunable microwave absorption by control of their phase structures. The optimal reflection loss was lower, up to &minus;56.4 dB at 8.8 GHz, and was achieved at a single thickness of 2.0 mm. This can be attributed to the optimal structure of Ni43Co7Mn39Sn11 alloy flakes by phase control, and thus achieving improved attenuation property and impedance matching. This study proved Ni43Co7Mn39Sn11 alloy flakes should be a promising microwave absorption material. It is also demonstrated that phase control is an effected strategy for optimal microwave absorption properties of metal alloys and may have some reference value for related studies
    corecore