14 research outputs found

    Assessment of biological dosimetric margin for stereotactic body radiation therapy

    Get PDF
    Purpose: To develop a novel biological dosimetric margin (BDM) and to create a biological conversion factor (BCF) that compensates for the difference between physical dosimetric margin (PDM) and BDM, which provides a novel scheme of a direct estimation of the BDM from the physical dose (PD) distribution. Methods: The offset to isocenter was applied in 1‐mm steps along left‐right (LR), anterior‐posterior (AP), and cranio‐caudal (CC) directions for 10 treatment plans of lung stereotactic body radiation therapy (SBRT) with a prescribed dose of 48 Gy. These plans were recalculated to biological equivalent dose (BED) by the linearquadratic model for the dose per fraction (DPF) of d = 3–20 Gy/fr and α/β= 3 - 10. BDM and PDM were defined so that the region that satisfied that the dose covering 95% (or 98%) of the clinical target volume was greater than or equal to the 90% of the prescribed PD and BED, respectively. An empirical formula of the BCF was created as a function of the DPF. Results: There was no significant difference between LR and AP directions for neither the PDM nor BDM. On the other hand, BDM and PDM in the CC direction were significantly larger than in the other directions. BCFs of D95% and D98% were derived for the transverse (LR and AP) and longitudinal (CC) directions. Conclusions: A novel scheme to directly estimate the BDM using the BCF was developed. This technique is expected to enable the BED‐based SBRT treatment planning using PD‐based treatment planning systems

    Development of Concurrent Design Environment Using Super High Definition Image

    No full text
    Abstract Though the concept of concurrent design has spread and various design tools have been used, the design environment that supports the designers' collaborative work has not been discussed enough. In this study, CDF (Concurrent Design Facility) was developed as a collaborative design environment in which designers, researchers and managers can discuss with each other while sharing the necessary data. The feature of CDF is that the users can share the intuitive, accurate and high presence information by using the super high definition stereo image projected by 4K projectors. In this study, as the mechanisms of sharing images between the center screen and each user's terminal, command capture method and screen capture method were introduced, and the effectiveness of these methods for the collaborative work was evaluated

    Accelerated FDPS: Algorithms to use accelerators with FDPS

    Get PDF
    We describe algorithms implemented in FDPS (Framework for Developing Particle Simulators) to make efficient use of accelerator hardware such as GPGPUs (general-purpose computing on graphics processing units). We have developed FDPS to make it possible for researchers to develop their own high-performance parallel particle-based simulation programs without spending large amounts of time on parallelization and performance tuning. FDPS provides a high-performance implementation of parallel algorithms for particle-based simulations in a "generic" form, so that researchers can define their own particle data structure and interparticle interaction functions. FDPS compiled with user-supplied data types and interaction functions provides all the necessary functions for parallelization, and researchers can thus write their programs as though they are writing simple non-parallel code. It has previously been possible to use accelerators with FDPS by writing an interaction function that uses the accelerator. However, the efficiency was limited by the latency and bandwidth of communication between the CPU and the accelerator, and also by the mismatch between the available degree of parallelism of the interaction function and that of the hardware parallelism. We have modified the interface of the user-provided interaction functions so that accelerators are more efficiently used. We also implemented new techniques which reduce the amount of work on the CPU side and the amount of communication between CPU and accelerators. We have measured the performance of N-body simulations on a system with an NVIDIA Volta GPGPU using FDPS and the achieved performance is around 27% of the theoretical peak limit. We have constructed a detailed performance model, and found that the current implementation can achieve good performance on systems with much smaller memory and communication bandwidth. Thus, our implementation will be applicable to future generations of accelerator system

    Performance of Polyvinyl Formal Insulated Cu–Nb/Nb 3

    No full text
    corecore