11 research outputs found

    Image_1_A case report: Dual-lead deep brain stimulation of the posterior subthalamic area and the thalamus was effective for Holmes tremor after unsuccessful focused ultrasound thalamotomy.JPEG

    No full text
    Holmes tremor is a symptomatic tremor that develops secondary to central nervous system disorders. Stereotactic neuromodulation is considered when the tremors are intractable. Targeting the ventral intermediate nucleus (Vim) is common; however, the outcome is often unsatisfactory, and the posterior subthalamic area (PSA) is expected as alternative target. In this study, we report the case of a patient with intractable Holmes tremor who underwent dual-lead deep brain stimulation (DBS) to stimulate multiple locations in the PSA and thalamus. The patient was a 77-year-old female who complained of severe tremor in her left upper extremity that developed one year after her right thalamic infarction. Vim-thalamotomy using focused ultrasound therapy (FUS) was initially performed but failed to control tremor. Subsequently, we performed DBS using two leads to stimulate four different structures. Accordingly, one lead was implanted with the aim of targeting the ventral oralis nucleus (Vo)/zona incerta (Zi), and the other with the aim of targeting the Vim/prelemniscal radiation (Raprl). Electrode stimulation revealed that Raprl and Zi had obvious effects. Postoperatively, the patient achieved good tremor control without any side effects, which was maintained for two years. Considering that she demonstrated resting, postural, and intention/action tremor, and Vim-thalamotomy by FUS was insufficient for tremor control, complicated pathogenesis was presumed in her symptoms including both the cerebellothalamic and the pallidothalamic pathways. Using the dual-lead DBS technique, we have more choices to adjust the stimulation at multiple sites, where different functional networks are connected. Intractable tremors, such as Holmes tremor, may have complicated pathology, therefore, modulating multiple pathological networks is necessary. We suggest that the dual-lead DBS (Vo/Raprl and Vim/Zi) presented here is safe, technically feasible, and possibly effective for the control of Holmes tremor.</p

    Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19

    No full text
    Abstract Background The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. Methods To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. Results Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as “estrogen signaling pathway,” “p160 steroid receptor coactivator (SRC) signaling pathway,” and “transcriptional regulation by STAT” were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. Conclusions Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes
    corecore