10 research outputs found

    Plasma-liquid interactions: a review and roadmap

    Get PDF
    Plasma-liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas

    Predicting Transformation Products during Aqueous Oxidation Processes: Current State and Outlook

    No full text
    Water quality and its impacts on human and ecosystem health presents tremendous global challenges. While oxidative water treatment can solve many of these problems related to hygiene and micropollutants, identifying and predicting transformation products from a large variety of micropollutants induced by dosed chemical oxidants and in situ formed radicals is still a major challenge. To this end, a better understanding of the formed transformation products and their potential toxicity is needed. Currently, no theoretical tools alone can predict oxidatively induced transformation products in aqueous systems. Coupling experimental and theoretical studies has advanced the understanding of reaction kinetics and mechanisms significantly. This perspective article highlights the key progress made concerning experimental and computational approaches to predict transformation products. Knowledge gaps are identified, and the research required to advance the predictive capability is discussed

    Computer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UV/H<sub>2</sub>O<sub>2</sub> Advanced Oxidation Process

    No full text
    We have developed a computer-based first-principles kinetic Monte Carlo (CF-KMC) model to predict degradation mechanisms and fates of intermediates and byproducts produced from the degradation of polyethylene glycol (PEG) in the presence of hydrogen peroxide (UV/H<sub>2</sub>O<sub>2</sub>). The CF-KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, and a KMC solver. The KMC solver is able to solve the predicted pathways successfully without solving ordinary differential equations. The predicted time-dependent profiles of averaged molecular weight, and polydispersitivity index (i.e., the ratio of the weight-averaged molecular weight to the number-averaged molecular weight) for the PEG degradation were validated with experimental observations. These predictions are consistent with the experimental data. The model provided detailed and quantitative insights into the time evolutions of molecular weight distribution and concentration profiles of low molecular weight products and functional groups. Our approach may be useful to predict the fates of degradation products for a wide range of complicated organic contaminants

    Mechanistic Insight into the Reactivity of Chlorine-Derived Radicals in the Aqueous-Phase UV–Chlorine Advanced Oxidation Process: Quantum Mechanical Calculations

    No full text
    The combined ultraviolet (UV) and free chlorine (UV–chlorine) advanced oxidation process that produces highly reactive hydroxyl radicals (HO<sup>•</sup>) and chlorine radicals (Cl<sup>•</sup>) is an attractive alternative to UV alone or chlorination for disinfection because of the destruction of a wide variety of organic compounds. However, concerns about the potential formation of chlorinated transformation products require an understanding of the radical-induced elementary reaction mechanisms and their reaction-rate constants. While many studies have revealed the reactivity of oxygenated radicals, the reaction mechanisms of chlorine-derived radicals have not been elucidated due to the data scarcity and discrepancies among experimental observations. We found a linear free-energy relationship quantum mechanically calculated free energies of reaction and the literature-reported experimentally measured reaction rate constants, <i>k</i><sub>exp</sub>, for 22 chlorine-derived inorganic radical reactions in the UV–chlorine process. This relationship highlights the discrepancy among literature-reported rate constants and aids in the determination of the rate constant using quantum mechanical calculations. We also found linear correlations between the theoretically calculated free energies of activation and <i>k</i><sub>exp</sub> for 31 reactions of Cl<sup>•</sup> with organic compounds. The correlation suggests that H-abstraction and Cl-adduct formation are the major reaction mechanisms. This is the first comprehensive study on chlorine-derived radical reactions, and it provides mechanistic insight into the reaction mechanisms for the development of an elementary reaction-based kinetic model

    Elucidating the Elementary Reaction Pathways and Kinetics of Hydroxyl Radical-Induced Acetone Degradation in Aqueous Phase Advanced Oxidation Processes

    No full text
    Advanced oxidation processes (AOPs) that produce highly reactive hydroxyl radicals are promising methods to destroy aqueous organic contaminants. Hydroxyl radicals react rapidly and nonselectively with organic contaminants and degrade them into intermediates and transformation byproducts. Past studies have indicated that peroxyl radical reactions are responsible for the formation of many intermediate radicals and transformation byproducts. However, complex peroxyl radical reactions that produce identical transformation products make it difficult to experimentally study the elementary reaction pathways and kinetics. In this study, we used ab initio quantum mechanical calculations to identify the thermodynamically preferable elementary reaction pathways of hydroxyl radical-induced acetone degradation by calculating the free energies of the reaction and predicting the corresponding reaction rate constants by calculating the free energies of activation. In addition, we solved the ordinary differential equations for each species participating in the elementary reactions to predict the concentration profiles for acetone and its transformation byproducts in an aqueous phase UV/hydrogen peroxide AOP. Our ab initio quantum mechanical calculations found an insignificant contribution of Russell reaction mechanisms of peroxyl radicals, but significant involvement of HO<sub>2</sub><sup>•</sup> in the peroxyl radical reactions. The predicted concentration profiles were compared with experiments in the literature, validating our elementary reaction-based kinetic model

    Computer-Based First-Principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous-Phase Advanced Oxidation Processes

    No full text
    In this study, a computer-based first-principles kinetic model is developed to predict the degradation mechanisms and fates of intermediates and byproducts produced during aqueous-phase advanced oxidation processes (AOPs) for various organic compounds. The model contains a rule-based pathway generator to generate the reaction pathways, a reaction rate constant estimator to estimate the reaction rate constant for each reaction generated, a mechanistic reduction module to reduce the generated mechanisms, an ordinary differential equations generator and solver to solve the generated mechanisms and calculate the concentration profiles for all species, and a toxicity estimator to estimate the toxicity of major species and calculate time-dependent profiles of relative toxicity (i.e., concentration of species divided by toxicity value). We predict concentration profiles of acetone and trichloroethylene and their intermediates and byproducts in photolysis with hydrogen peroxide (i.e., UV/H<sub>2</sub>O<sub>2</sub>) and validate with experimental observations. The predicted concentration profiles for both parent compounds are consistent with experimental data. The calculated profiles of 96-h green algae chronic toxicity show that the overall toxicity decreases during the degradation process. These generated mechanisms also provide detailed and quantitative insights into the pathways for the formation and consumption of important intermediates and byproducts produced during AOPs. Our approach is sufficiently general to be applied to a wide range of contaminants

    Role of Carbonyl Compounds for <i>N</i>‑Nitrosamine Formation during Nitrosation: Kinetics and Mechanisms

    No full text
    N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5–152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (–1) and relatively low activation energies (–1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater

    Kinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UV/H<sub>2</sub>O<sub>2</sub>

    No full text
    Ionophore antibiotics (IPAs), one of the major groups of pharmaceuticals used in livestock industry, have been found to contaminate agricultural runoff and surface waters via land application of animal manures as fertilizers. However, limited research has investigated the means to remove IPAs from water sources. This study investigates the degradation of IPAs by using ultraviolet (UV) photolysis and UV combined with hydrogen peroxide (UV/H<sub>2</sub>O<sub>2</sub>) advanced oxidation process (AOP) under low-pressure (LP) UV lamps in various water matrices. Three widely used (monensin, salinomycin, and narasin) and one model (nigericin) IPAs exhibit low light absorption in the UV range and degrade slowly at the light intensity of 3.36 × 10<sup>–6</sup> Einstein·L<sup>–1</sup>·s<sup>–1</sup> under UV photolysis conditions. However, IPAs react with hydroxyl radicals produced by UV/H<sub>2</sub>O<sub>2</sub> at fast reaction rates, with second-order reaction rate constants at (3.49–4.00) × 10<sup>9</sup> M<sup>–1</sup>·s<sup>–1</sup>. Water matrix constituents enhanced the removal of IPAs by UV photolysis but inhibited UV/H<sub>2</sub>O<sub>2</sub> process. A steady-state kinetic model successfully predicts the impact of water constituents on IPA degradation by UV/H<sub>2</sub>O<sub>2</sub> and determines the optimal H<sub>2</sub>O<sub>2</sub> dose by considering both energy consumption and IPA removal. LC/MS analysis of reaction products reveals the initial transformation pathways of IPAs via hydrogen atom abstraction and peroxidation during UV/H<sub>2</sub>O<sub>2</sub>. This study is among the first to provide a comprehensive understanding of the degradation of IPAs via UV/H<sub>2</sub>O<sub>2</sub> AOP

    Development of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactions

    No full text
    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur

    Acid-Catalyzed Transformation of Ionophore Veterinary Antibiotics: Reaction Mechanism and Product Implications

    No full text
    Ionophore antibiotics (IPAs) are polyether antimicrobials widely used in the livestock industry and may enter the environment via land application of animal waste and agricultural runoff. Information is scarce regarding potential transformation of IPAs under environmental conditions. This study is among the first to identify the propensity of IPAs to undergo acid-catalyzed transformation in mildly acidic aquatic systems and characterize the reactions in depth. The study focused on the most widely used monensin (MON) and salinomycin (SAL), and also included narasin (NAR) in the investigation. All three IPAs are susceptible to acid-catalyzed transformation. MON reacts much more slowly than SAL and NAR and exhibits a different kinetic behavior that is further evaluated by a reversible reaction kinetic model. Extensive product characterization identifies that the spiro-ketal group of IPAs is the reactive site for the acid-catalyzed hydrolytic transformation, yielding predominantly isomeric and other products. Toxicity evaluation of the transformation products shows that the products retain some antimicrobial properties. The occurrence of IPAs and isomeric transformation products is also observed in poultry litter and agricultural runoff samples. Considering the common presence of mildly acidic environments (pH 4–7) in soils and waters, the acid-catalyzed transformation identified in this study likely plays an important role in the environmental fate of IPAs
    corecore